烧结机余热锅炉主要是利用钢铁企业烧结工序的余热进行发电的余热锅炉。烧结余热回收主要有两部分:一是烧结机尾部废气余热,二是热烧结矿在冷却机前段空冷时产生的废气余热。目前在该行业的余热发电项目主要有单压余热发电、双压余热发电、闪蒸余热发电和补燃余热发电四种形式;发电系统类型有饱和蒸汽发电系统和过热发电系统两种。
1 自动调节性能不好。在变负荷时、启停制粉系统时,喷氨量不能适应负荷和脱硝入口NOx的变化,导致脱硝出口NOx波动太大,导致瞬时喷氨量相对过大,专业锅炉销售,从而引起氨逃逸增加。
2 脱硝入口NOx分布不均匀,与喷氨格栅每个喷嘴的喷氨量不匹配。导致出口NOx不均匀。导致局部氨逃逸高。
3 喷氨格栅喷氨不均匀,导致出口NOx不均匀。导致局部氨逃逸高。
4 测量系统不准确。一般SCR左右侧出入口各装一个测点,在测点发生表管堵塞、零漂时不具有代表性,导致自调系统喷氨过量。从而引起氨逃逸升高。包括NOx测点、氧量测点、氨逃逸测点。
5 测点位置安装位置不具代表性。测点数量过少。安装位置没有经过充分的混合,潼南锅炉销售,会导致测量不准。另外测点数量太少,不能随时比对,当发生堵塞、零漂时不能及时发现。
6 测点故障率高,当测点故障时,指示不准,引起自调切除,只能手调,难以适应AGC负荷随时变动的需求。
7 在变负荷和启停制粉系统时,脱硝入口NOx波动大,从而引起脱硝出口波动大,喷氨量波动大,引起氨逃逸。由于低氮燃烧器改造的效果差,在实际运行中,尤其在大幅度变负荷时,工业锅炉销售,脱硝入口NOx变化较大,锅炉销售报价,会加大脱硝自调的难度。
8 AGC投入时,普遍变负荷速率较快。为了响应负荷的快速变化,燃料量变化太快,风粉配比不能保证脱硝入口NOx稳定。引起大幅波动。
9 烟气流场的不均匀,导致喷氨量与烟气量不匹配。烟气流速在烟道的横截面各个位置不能均匀分布,尤其在烟道发生转向后,各个部位风速不一致,会导致局部氨逃逸偏高。
10 烟气温度变化幅度大。在低负荷时,烟温下降。局部烟温太低,会引起催化剂活性下降,从而引起氨逃逸升高。
11 脱硝自调控制策略存在缺陷。测点反吹时,自调的跟踪问题不能完全解决。往往在反吹结束后,SCR出口NOx会有一个阶跃,突然升高或突然降低,增加扰动和波动,增加氨逃逸。
12 催化剂局部堵塞、性能老化。导致单层催化剂各处催化效率不同,为了控制出口参数,只能增加喷氨量,从而导致局部氨逃逸升高。
13 由于SCR脱硝装置处于烟气的高灰段,氨逃逸表是利用激光原理测量,容易引起测量不准。测量技术不过关,不能准确反映氨逃逸情况,不能给运行一个有效的参考数据。由于原烟气含灰量高达30-50g/m3,传统的对射式氨逃逸分析仪无法穿透,并且由于锅炉负荷的变化会导致光速偏移,维护量很大。而由于在较低温度下(230℃以下),NH3和SO3会生成NH4HSO4,对于传统的采样管线抽取式氨逃逸分析仪的采样管伴热温度不会超过180℃,所以在采样管线中硫酸氢an会快速生成,导致氨气部分或全部损失,监测结果没有实际意义。
14 液氨质量差。由于液氨的腐蚀性和有毒性,检测很不方便。一般液氨的检测由厂家自己检测。因此,对液氨质量缺乏有效监督。现场经常发生供氨管道滤网堵塞的现象。也会造成喷氨格栅喷氨量的不均匀。从而影响氨逃逸。
锅炉影响积灰的因素
锅炉受热面上积灰是常见的现象,由于灰的导热系数小,因此积灰使热阻增加,热交换恶化,以致排烟温度升高,锅炉效率降低。积灰严重而形成堵灰时,会增加烟道阻力,使锅炉出力降低,甚至被迫停炉清理。
影响积灰的因素
积灰程度与 烟气流速、飞灰颗粒度、管束结构特性等因素有关。
1烟气流速
积灰程度与烟气流速有很大的关系。烟气流速越高,灰粒的冲刷作用越大,因而背风面的积灰越少,迎风面的积灰更少甚至没有。如烟速小于2.5~3m/s时,迎风面也有较多的积灰,当烟气流速8~10m/s时,迎风面一般不沉积灰粒。
2 飞灰颗粒度
若果粗灰多,则冲刷作用大而积灰轻。如细灰多,则冲刷作用小而积灰较多。因此,液态除渣炉、油炉等的积灰比煤粉炉严重。
3 管束的结构特性
错列布置的管束迎风面受冲刷,背风面受冲刷也较充分,故积灰比较轻。顺列不知的管束背风面受冲刷少,从第二排起,管子迎风面也不受正面冲刷,因此积灰较为严重。
如果减少纵向管间节距,对错列管束来说,由于背风面冲刷更强烈,所以积灰减轻;对顺列管束来说,相邻管子的积灰更容易搭积在一起,因此形成更严重的积灰。
减小管子直径,飞灰冲击积灰会加大,因而积灰减轻。采用小管径管子制造锅炉受热面还有放射系数高、结构紧凑等优点,所以现时正得到广泛的应用。
版权所有©2024 产品网