真空蒸发镀膜法在真空室中的应用
样品必须是固体;满足***,无性,无污染,无磁,无水,成分稳定要求。表面受到污染的试样,要在不***试样表面结构的前提下进行适当清洗,然后烘干;
新断开的断口或断面,一般不需要进行处理,以免***断口或表面的结构状态;
要侵蚀的试样表面或断口应清洗干净并烘干;
磁性样品预先去磁;
试样大小要适合仪器样品座尺寸。
真空蒸发镀膜法(简称真空蒸镀)是在真空室中,加热蒸发容器中待形成薄膜的原材料,使其原子或分 子从表面气化逸出,形成蒸气流,入射到固体(称为衬 底或基片)表面,凝结形成固态薄膜的方法。
能量色散X射线光谱仪(EnergyDispersiveX
能量色散X射线光谱仪(EnergyDispersive X-Ray Spectroscopy,EDX)
能谱分析是当今材料领域研究人员广泛采用的技术。如图3,利用SEM,各种信号可以提供给定样品的不同信息。当SEM与EDX探测器结合使用时,X射线也可以用作产生化学信息的信号。
EDX借助于试样发出的元素特征X射线波长和强度进行分析,根据波长测定试样所含元素,根据强度测定元素相对含量。
根据探针在待测样品表面扫描方式不同,可分为点、线、面分析三种方式:
<1>点分析
将分析范围***到样品中感兴趣的点上,进行定性或定量分析,常用于显微结构的成分分析,如材料的晶界,析出相,夹杂相等。
<2>线分析
电子束沿着特定的方向进行线扫描,能获得元素含量变化的线分布曲线。如果和样品的形貌像相对照分析,可直观分析元素在不同相或区域内的分布和变化趋势。
<3>面分析
利用电子束对样品表面的特定区域进行扫描,元素在试样表面的分布能在CRT上以亮度分布显示(定性分析)。
扫描电子显微镜是利用材料表面微区的特征
扫描电子显微镜是利用材料表面微区的特征(如形貌、原子序数、化学成分、或晶体结构等)的差异,在电子束作用下通过试样不同区域产生不同的亮度差异,从而获得具有一定衬度的图像。成像信号是二次电子、背散射电子或吸收电子,其中二次电子是主要的成像信号。图3为其成像原理图,高能电子束轰击样品表面,激发出样品表面的各种物理信号,再利用不同的接受物理信号转换成图像信息。
背向散射电子(BackscatteredElectr)
背向散射电子(Backscattered Electr):入射电子与样品子发生弹性碰撞,而逃离样品表面的高能量电子,其动能等于或略小于入射电子的能量。背向散射电子产生的数量,会因样品元素种类不同而有差异,样品中平均原子序越高的区域,释放出来的背向散射电子越多,背向散射电子影像也就越亮,因此背向散射电子影像有时又称为原子序对比影像。由于背向散射电子产生于距样品表面约5000?的深度范围内,由于入射电子进入样品内部较深,电子束已被散射开来,因此背向散射电子影像分辨率不及二次电子影像。
版权所有©2025 产品网