电子显微镜利用电子成像
电子显微镜利用电子成像,类似于光学显微镜使用可见光成像。由于电子的波长远小于光的波长,所以电子显微镜的分辨率要高于光学显微镜的分辨率。扫描电子显微镜(Scanning Electron Microscope,SEM),简称扫描电镜,已成为功能强、用途广的材料表征工具,已广泛应用于材料,冶金,矿物,生物学等领域,如图1所示为蔡司场发射扫描电镜。SEM主要组成部分是:电子光学系统,信号收集处理系统,图像显示和记录系统,真空系统,电源及控制系统等。
影响扫描电镜的分辨本领的主要因素
影响扫描电镜的分辨本领的主要因素有:
A.入射电子束光斑直径:扫描电镜分辨能力的极限一般来说,热阴极电子的小束斑直径可以减小到6nm,场发射电子可以使束斑直径小于3nm
B.入射电子束在样品中的膨胀效应:扩散程度取决于入射电子的能量和样品的原子序数束流能量越高,样品的原子序数越小,电子束的相互作用体积越大,信号产生区域随电子束的扩散而增大,从而降低了分辨率
C.使用的成像方式和调制信号:当二次电子作为调制信号时,由于其能量低(小于50ev),平均自由程短(10~100 nm左右),只有表面50-100nm范围内的二次电子才能从样品表面逸出,散射次数非常有限基本上不向侧面延伸,所以二次电子像的分辨率大约等于束斑直径.
冷场发射式电子的优缺点
要从极细的钨针尖场发射电子,金属表面必需完全干净,无任何外来材料的原子或分子在其表面,即使只有一个外来原子落在表面亦会降低电子的场发射,所以场发射电子必需保持超高真空度,来防止钨阴极表面累积原子。由于超高真空设备价格极为高昂,所以一般除非需要高分辨率SEM,否则较少采用场发射电子。
冷场发射式大的优点为电子束直径,亮度,因此影像分辨率优。能量散布,故能改善在低电压操作的效果。为避免针尖被外来气体吸附,而降低场发射电流,并使发射电流不稳定,冷场发射式电子必需在10-10 torr的真空度下操作,虽然如此,还是需要定时短暂加热针尖至2500K(此过程叫做flashing),以去除所吸附的气体原子。它的另一缺点是发射的总电流。
背向散射电子(BackscatteredElectr)
背向散射电子(Backscattered Electr):入射电子与样品子发生弹性碰撞,而逃离样品表面的高能量电子,其动能等于或略小于入射电子的能量。背向散射电子产生的数量,会因样品元素种类不同而有差异,样品中平均原子序越高的区域,释放出来的背向散射电子越多,背向散射电子影像也就越亮,因此背向散射电子影像有时又称为原子序对比影像。由于背向散射电子产生于距样品表面约5000?的深度范围内,由于入射电子进入样品内部较深,电子束已被散射开来,因此背向散射电子影像分辨率不及二次电子影像。
版权所有©2025 产品网