拉曼光谱在生物学研究中的应用
拉曼光谱是研究生物大分子的有力手段,由于水的拉曼光谱很弱、谱图又很简单,故拉曼光谱可以在接近自然状态、活性状态下来研究生物大分子的结构及其变化。
生物大分子的拉曼光谱可以同时得到许多宝贵的信息:
(1)蛋白质二级结构:α-螺旋、β-折叠、无规卷曲及β-回转
(2)蛋白质主链构像:酰胺Ⅰ、Ⅲ,C-C、C-N伸缩振动
(3)蛋白质侧链构像:苯丙氨酸、酪氨酸、色氨酸的侧链和后二者的构像及存在形式随其微环境的变化
(4)对构像变化敏感的羧基、巯基、S-S、C-S构像变化
(5)生物膜的脂肪酸碳氢链旋转异构现象。
(6)DNA分子结构以及和DNA与其他分子间的作用。
(7)研究脂类和生物膜的相互作用、结构、组分等。
(8)对生物膜中蛋白质与脂质相互作用提供重要信息。
拉曼光谱技术在检测领域的应用
每种拉曼光谱在其应用领域均有其特殊优势,共焦显微拉曼光谱技术可以实现样品微区的剖层分析;空间偏移拉曼光谱技术能够有效***包装材料的拉曼干扰,实现了对透明或半透明介质内不同深度样品分析;表面增强拉曼光谱技术可以实现的痕量检测;便携式拉曼光谱仪能够现场在线监测,具有快速、便捷、准确率高、高度安全性等优势。
拉曼光谱仪常见的问题及解答
我总是在测试时得到一些位置重复的、尖锐的谱峰,为什么?
当你在重复测试一个样品时发现有一些尖锐谱线在相同的位置重复出现时,可以排除它们是宇宙射线的可能(因宇宙射线的位置足随机的)。这些重复的尖锐谱线通常来自日光灯的发射或CRT显示器的磷光发射,尤其当用长工作距离的物镜时问题更严重。它们也可能来自气体激光器发射的等离子线,需仔细鉴别。
磷光线的干扰主要是CRT显示器上所镀磷光物质引起。如发现此种情况,可将CRT显示器关掉或将荧光屏的亮度调暗。需要牢记的是:这些发射谱线的波数值永远是在同一个坐标值上,当转换不同波长激光激发时它们在拉曼谱上的位置是随着移动和改变的。
当上述方法都不能解决问题而你正在使用514nm激光进行激发时,检查等离子线滤光片是否已经插上。在其它激光配置系统中,要么不需要检查,要么激光器上已经包含了滤光片。
拉曼光谱的原理及应用
拉曼光谱由于近几年来以下几项技术的集中发展而有了更广泛的应用。这些技术是:
CCD检测系统在近红外区域的高灵敏性,体积小而功率大的二极管激光器,与激发激光及信号过滤整合的光纤探头。这些产品连同高口径短焦距的分光光度计,提供了低荧光本底而高质量的拉曼光谱以及体积小、容易使用的拉曼光谱仪。
光照射到物质上发生弹性散射和非弹性散射,弹性散射的散射光是与激发光波长相同的成分,非弹性散射的散射光有比激发光波长长的和短的成分,统称为拉曼效应。
当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会按原来的方向透射,而一小部分则按不同的角度散射开来,产生散射光。在垂直方向观察时,除了与原入射光有相同频率的瑞利散射外,还有一系列对称分布着若干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。由于拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究谱线特征。
版权所有©2024 产品网