手持化学检测仪器报价来电咨询「华***安」
作者:华泰诺安2022/4/4 4:30:16







拉曼光谱技术的优越性

提供快速、简单、可重复、且更重要的是无损伤的定性定量分析,它无需样品准备,样品可直接通过光纤探头或者通过玻璃、石英、和光纤测量,此外。。。

①由于水的拉曼散射很微弱,拉曼光谱是研究水溶液中的生物样品和化学化合物的理想工具。

②拉曼一次可以同时覆盖50~4000波数的区间,可对有机物及无机物进行分析。相反,若让红外光谱覆盖相同的区间则必须改变光栅、光束分离器、滤波器和检测器。。。

③拉曼光谱谱峰清晰尖锐,更适合定量研究、数据库搜索、以及运用差异分析进行定性研究。在化学结构分析中,***的拉曼区间的强度可以和功能集团的数量相关。

④因为激光束的直径在它的聚焦部位通常只有0.2~2毫米,常规拉曼光谱只需要少量的样品就可以得到。这是拉曼光谱相对常规红外光谱一个很大的优势,而且拉曼显微镜物镜可将激光束进一步聚焦至20微米甚至更小,可分析更小面积的样品。

⑤共振拉曼效应可以用来有选择性地增强大生物分子特个发色基团的振动,这些发色基团的拉曼光强能被选择性地增强1000到10000倍。






拉曼光谱仪在能源、电池领域中的应用

通常情况下拉曼光谱是不用于离子检测的,但当离子和其它物质发生作用时,可以通过其它物质信号的改变来反推离子的扩散或浓度情况。由于拉曼光谱可以对分子所处的微环境进行表征,在一定的实验设计下,它是可以对离子、pH值、温度等信息进行表征的。

想要了解更多拉曼光谱仪的相关信息,欢迎拨打网站上的***电话!





拉曼光谱的工作原理

与分析偶极矩变化情况的FTIR光谱不同,拉曼分析的是分子键极化性的变化情况。 光与分子的相互作用会导致电子云形变。 这种形变称作极化度变化。 分子键具有特定的能量迁跃,在此期间极化度会发生变化,从而产生拉曼活性。  例如,含有同核原子之间键(例如:碳-碳、硫-硫与氮-氮键)的分子会在光子与其相互作用时,造成极化性发生变化。 这些是产生拉曼活性光谱带的化学键示例,然而在FTIR中不能或者很难看到这些。

由于拉曼效应本身比较弱,因此必须对拉曼光谱仪的光学组件进行良好匹配与优化。 此外,由于在使用较短波长辐射时有机分子更容易发出荧光,因此通常使用较长波长单色激发源,例如:产生785 nm光的固态激光二极管。  





拉光谱原理是什么?

瑞利散射:当用-定频率的激发光照射分子时, -部分散射光的频率和入射光的频率相等。这种散射是分子对光子的一-种弹性散射。只有分子和光子间的碰撞为弹性碰撞,没有能量交换时,才会出现的散射。拉曼散射:则是另一部分散射光的频率和激发光的频率 不等的光子发生的散射。Raman散射的几率小,的Raman散射也仅占整个散射光的千分之九,而弱的甚到于万分之一。

设散射物分子原来处于基态。当受到入射光照射时,激发光与此分子作用弓|起极化可以看做是虚的吸收,表述为电子跃迁到虚态,虚能级上的电子则立即跃迁到下能级而发光,即为散射光。跃迁后分子回到原来所处的基态,则为瑞利散射;分子跃迁后不能回到原来所处的基态,而落到另一较高能级并发射光子 ,这个发射的新光子的能量小于入射光子能量,而发射光子和新光子频率差v就是拉曼光谱谱线。汙拉漫位移^v只取决于散射分子的结构,与入射光频率无关,所以拉曼光谱可以作为分子振动能级的***光谱。








商户名称:北京华泰诺安技术有限公司

版权所有©2025 产品网