拉曼光谱在化学研究中的应用
拉曼光谱在有机化学方面主要是用作结构鉴定和分子相互作用的手段,它与红外光谱互为补充,可以鉴别特殊的结构特征或特征基团。拉曼位移的大小、强度及拉曼峰形状是鉴定化学键、官能团的重要依据。利用偏振特性,拉曼光谱还可以作为分子异构体判断的依据。
在无机化合物中金属离子和配位体间的共价键常具有拉曼活性,由此拉曼光谱可提供有关配位化合物的组成、结构和稳定性等信息。另外,许多无机化合物具有多种晶型结构,它们具有不同的拉曼活性,因此用拉曼光谱能测定和鉴别红外光谱无法完成的无机化合物的晶型结构。
在催化化学中,拉曼光谱能够提供催化剂本身以及表面上物种的结构信息,还可以对催化剂制备过程进行实时研究。同时,激光拉曼光谱是研究电极/溶液界面的结构和性能的重要方法,能够在分子水平上深入研究电化学界面结构、吸附和反应等基础问题并应用于电催化、腐蚀和电镀等领域。
拉曼光谱
拉曼光谱具有明显的优势,主要包括:水的拉曼散射很微弱,是研究水溶液中的生物样品和化学化合物的理想工具;波数范围广,可对有机物及无机物进行分析;拉曼光谱具有***图谱特点,谱峰分辨率高、清晰尖锐,适合进行不定项检测等;抗干扰能力强,无需进行复杂的样品准备,可进行快速分析;对测试样品的量要求少,只需要少量的样品就可以实现检测。
同时,随着纳米增强***和光源技术的发展与应用,使基于拉曼光谱的检测技术得到了广泛的发展和应用。目前,这一技术已被广泛用于食品安全、环境科学,公共安全、生物***等领域,成为检测市场中一个热点。
拉曼光谱仪常见的问题及解答
我总是在测试时得到一些位置重复的、尖锐的谱峰,为什么?
当你在重复测试一个样品时发现有一些尖锐谱线在相同的位置重复出现时,可以排除它们是宇宙射线的可能(因宇宙射线的位置足随机的)。这些重复的尖锐谱线通常来自日光灯的发射或CRT显示器的磷光发射,尤其当用长工作距离的物镜时问题更严重。它们也可能来自气体激光器发射的等离子线,需仔细鉴别。
磷光线的干扰主要是CRT显示器上所镀磷光物质引起。如发现此种情况,可将CRT显示器关掉或将荧光屏的亮度调暗。需要牢记的是:这些发射谱线的波数值永远是在同一个坐标值上,当转换不同波长激光激发时它们在拉曼谱上的位置是随着移动和改变的。
当上述方法都不能解决问题而你正在使用514nm激光进行激发时,检查等离子线滤光片是否已经插上。在其它激光配置系统中,要么不需要检查,要么激光器上已经包含了滤光片。
拉曼光谱仪的神奇妙用
拉曼光谱是一种散射光谱,它的产生基于光与分子的非弹性碰撞,当一束单色光照射到物质上时,物质的分子和光子相互作用,可能产生弹性碰撞和非弹性碰撞。其中, 弹性碰撞是不存在能量交换过程的,只是改变了光子的传播方向,而非弹性碰撞与入射光之间则存在能量差。
以材料与器件检测技术中心所测古陶瓷为例,通过拉曼光谱的测量, 可以得到古陶瓷釉面及胎体的拉曼谱, 进一步获取有关釉面原料成分、矿物种类等重要信息,之后对照矿物标准谱,就像查字典一样,可以有效的对比出来不同矿物所属的晶体范围、矿物的结果。拉曼光谱是介于分子阶段的测试,因此它对天然矿物、珠宝、玉石,也同样可以进行测试,这种测试也是根据内部的结晶结构、矿物光能所反射的结果,来对比珠宝、玉石、矿物图表。
版权所有©2025 产品网