山西******拉曼厂家承诺守信「华***安」
作者:华泰诺安2022/2/18 4:36:30

拉曼频移,拉曼光谱与分子极化率的关系

①拉曼频移:

散射光频与激发光频之差,取决于分子振动能级的改变,所以它是特征的,与入射光的波长无关,适应于分子结构的分析

②拉曼光谱与分子极化率的关系:

分子在静电场E中,极化感应偶极矩P为静电场E与极化率的乘积;

诱导偶极矩与外电场的强度之比为分子的极化率;

分子中两原子距离很大时,极化率也很大;

拉曼散射强度与极化率成正比例;





应用激光光源的拉曼光谱法

应用激光具有单色性好、方向性强、亮度高、相干性好等特性,与表面增强拉曼效应相结合,便产生了表面增强拉曼光谱。其灵敏度比常规拉曼光谱可提高104~107倍,加之活性载体表面选择吸附分子对荧光发射的***,使分析的信噪比大大提高。已应用于生物、***及环境分析中痕量物质的检测。共振拉曼光谱是建立在共振拉曼效应基础上的另一种激光拉曼光谱法。共振拉曼效应产生于激发光频率与待测分子的某个电子吸收峰接近或重合时,这一分子的某个或几个特征拉曼谱带强度可达到正常拉曼谱带的104~106倍,有利于低浓度和微量样品的检测。已用于无机、有机、生物大分子、离子组成的测定和研究。激光拉曼光谱与傅里叶变换红外光谱相配合,已成为分子结构研究的主要手段




什么是拉曼光谱?

拉曼光谱是一种分子光谱技术,利用光与物质之间的相互作用深入了解材料的构成或特性,例如:FTIR。 拉曼光谱提供的信息源自于光散射过程,而红外光谱则依靠的是光吸收。 拉曼光谱可提供关于分子内和分子间振动的信息, 并且可增强对反应的了解。 拉曼与FTIR光谱均可提供体现分子特定振动特点的光谱(“分子***”),对于识别物质很重要。 但是,拉曼光谱可提供关于体现晶格与分子主链结构的较低频率模式与振动的更多信息。

在线拉曼光谱用于监测结晶过程以及揭示反应机理与动力学信息。 这些数据与分析工具相结合,有助于明确了解以及合理优化反应。




拉曼光谱的工作原理

与分析偶极矩变化情况的FTIR光谱不同,拉曼分析的是分子键极化性的变化情况。 光与分子的相互作用会导致电子云形变。 这种形变称作极化度变化。 分子键具有特定的能量迁跃,在此期间极化度会发生变化,从而产生拉曼活性。  例如,含有同核原子之间键(例如:碳-碳、硫-硫与氮-氮键)的分子会在光子与其相互作用时,造成极化性发生变化。 这些是产生拉曼活性光谱带的化学键示例,然而在FTIR中不能或者很难看到这些。

由于拉曼效应本身比较弱,因此必须对拉曼光谱仪的光学组件进行良好匹配与优化。 此外,由于在使用较短波长辐射时有机分子更容易发出荧光,因此通常使用较长波长单色激发源,例如:产生785 nm光的固态激光二极管。  




商户名称:北京华泰诺安技术有限公司

版权所有©2025 产品网