拉曼光谱在高分子材料中的应用
拉曼光谱可提供聚合物材料结构方面的许多重要信息。如分子结构与组成、立体规整性、结晶与去向、分子相互作用,以及表面和界面的结构等。从拉曼峰的宽度可以表征高分子材料的立体化学纯度。如无规立场试样或头-头,头-尾结构混杂的样品,拉曼峰是弱而宽,而高度有序样品具有强而尖锐的拉曼峰。
研究内容包括:
(1)化学结构和立构性判断:高分子中的C=C、C-C、S-S、C-S、N-N等骨架对拉曼光谱非常敏感,常用来研究高分子的化学组份和结构。
(2)组分定量分析:拉曼散射强度与高分子的浓度成线性关系,给高分子组分含量分析带来方便。
(3)晶相与无定形相的表征以及聚合物结晶过程和结晶度的监测。
(4)动力学过程研究:伴随高分子反应的动力学过程如聚合、裂解、水解和结晶等。相应的拉曼光谱某些特征谱带会有强度的改变。
(5)高分子取向研究:高分子链的各向异性必然带来对光散射的各向异性,测量分子的拉曼带退偏比可以得到分子构型或构象等方面的重要信息。
(6)聚合物共混物的相容性以及分子相互作用研究。
(7)复合材料应力松弛和应变过程的监测。
(8)聚合反应过程和聚合物固化过程监控。
拉曼光谱的分析方向
拉曼光谱仪分析技术是以拉曼效应为基础建立起来的分子结构表征技术,其信号来源与分子的振动和转动。
拉曼光谱的分析方向有:
定性分析:不同的物质具有不同的特征光谱,因此可以通过光谱进行定性分析。
结构分析:对光谱谱带的分析,又是进行物质结构分析的基础。
定量分析:根据物质对光谱的吸光度的特点,可以对物质的量有很好的分析能力。
拉曼光谱仪的使用过程中有哪些注意事项?
行业内普遍认为可信的拉曼光谱仪正是由于使用的灵活性,样品的高适应程度等优点,使之能够受到了整个大市场的大范围青睐。不过现在很多用户不知道拉曼光谱仪哪个好,也不知道拉曼光谱仪的使用注意事项有哪些,下面就给大家带来了几点使用注意事项。
一,使用前
光源需先预热五到十分钟,同时确保光谱仪供电稳定,实验仪器连接时确保各个连接口连接紧实,在实验的过程中尽量避免松动接口的操作,同时不要造成较大的震动,因为光谱仪是敏感度很高的仪器,如果仪器连接是存在连接口松动的情况,会导致实验出现误差。
二,使用中
为了避免其他不相干的原因对检测过程进行干扰,那么对于使用拉曼光谱仪也必须有着一些要求,操作软件时不要太快和频繁,比如说扫描背景时,一至两秒后再点击运行按钮,在拉曼光谱仪观察某段或某个特定波长和采集数据的时候,先暂停,再进行下一步操,如果太快,可能也就没有办法进行下一步的操作了。
二,使用后
关闭拉曼光谱仪光源时,先关掉灯,让散热风扇再吹一到两分钟再拔掉电源;高利通拉曼光谱仪在拆开连接光源与光谱仪的光纤后,用保护帽把光纤头和光谱仪的光纤接头盖上,妥善保管,把光谱仪放到恒温干燥箱中。
拉曼光谱的原理及应用
拉曼光谱由于近几年来以下几项技术的集中发展而有了更广泛的应用。这些技术是:
CCD检测系统在近红外区域的高灵敏性,体积小而功率大的二极管激光器,与激发激光及信号过滤整合的光纤探头。这些产品连同高口径短焦距的分光光度计,提供了低荧光本底而高质量的拉曼光谱以及体积小、容易使用的拉曼光谱仪。
光照射到物质上发生弹性散射和非弹性散射,弹性散射的散射光是与激发光波长相同的成分,非弹性散射的散射光有比激发光波长长的和短的成分,统称为拉曼效应。
当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会按原来的方向透射,而一小部分则按不同的角度散射开来,产生散射光。在垂直方向观察时,除了与原入射光有相同频率的瑞利散射外,还有一系列对称分布着若干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。由于拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究谱线特征。
版权所有©2025 产品网