了解人脸识别,先要从图像表示讲起。我们先以黑白图片为例,看看计算机是怎么表示的。计算机程序可以将黑白图片可以表示为灰度图像。人脸识别技术包括以下几个阶段:一是信息采集,采集并输入各种人脸图像;二是人脸信息预处理,对人脸图像进行化处理;三是人脸判定,判定图像中是否含有人脸图像信息;通过矩阵表示图像后,图像的各种处理就转化为数学问题,可以使用数学的理论和方法进行解决,而这正是计算机所擅长的。
大家都知道,计算机能够识别和处理的是二进制,不管我们输入的是文本、图像、声音,计算机都是用一定长度的二进制串进行存储和处理。在灰度图像中,一个像素使用8个比特位,从而可以表示256个灰度阶,表围是0-255。其中0代表纯黑色,255代表纯白色。人脸识别在近几年已成为一种热门的身份认证技术,它主要利用人的脸部多个特***息对***的身份进行辨别。
这个问题的依赖于分类问题。即,先不谈特征值,首先如何把照片集合按人正确的分类?这里就要先谈谈机器学习。可以从有限的训练集样本中把算法很好的泛化。所以,我们先找到有限的训练集,设计好初始函数f(x;w),并已经量化好了训练集中x->y。对图像中的人脸信息进行***与提取;对不同的人脸信息进行分类处理,并将信息传递给人脸识别系统;对比人脸特***息相似度,并确认身份。
版权所有©2025 产品网