了解人脸识别,先要从图像表示讲起。我们先以黑白图片为例,看看计算机是怎么表示的。计算机程序可以将黑白图片可以表示为灰度图像。人脸识别首先是找出镜头中的所有有人脸特征的面孔,比如人们会经常使用手机进行拍照,拍照模式中都会有人像模式,它能够很容易地检测出人脸的位置,这也就是相机能够快速进行对焦的原因。这一过程叫做监督学习下的训练。由清晰的人脸照转化出的象素值矩阵,应当设计出什么样的函数f(x)转化为特征值呢?
这一过程叫做监督学习下的训练。由清晰的人脸照转化出的象素值矩阵,应当设计出什么样的函数f(x)转化为特征值呢?近几年,传统的身份鉴别技术已经不足以满足人们的需求,在这种情况下,人脸识别技术脱颖而出,无论在科研方面还是在实践应用方面,人脸识别系统都取得了重大的突破,并且在各行各业也扮演着越来越重要的角色。接下来,就是电脑主动去区分不同的人脸,人类能够通过眼睛大小、鼻子高低、肤色等外部形态轻松地分辨不同的两张人脸,利用电脑分辨人脸,就需要对图像进行量化,得到脸部的 128 个特征测量值,进一步计算出欧式距离值,终即可确定你是不是你。
简单起见,就使用两个矩阵对应元素之差的值之和或者平方和等,计算机进行快速运算,找到相似的矩阵,然后将其所代表的数字进行输出。相较于其他人类身份鉴别技术,人脸识别系统在实际应用过程中既具有一定的优势。如果数据x是低维的、简单的,例如只有二维,那么分类很简单。举个例子,更容易理解一些。比如,计算机内部已经存放了包含数字1和7以及它们所对应的灰度矩阵。当新输入一张图像后,程序会自动计算它的矩阵与这些矩阵的相似度。
一个字节可以表示一个像素,那怎么表示一张图片呢,用矩阵进行表示。简单来说,就是表格,比如可以使用8行8列来表示一张8*8的灰度图片。为此,我们必须适当地调整图片中的人脸,使得脸部的特征点能更好的和被检测者重叠。近几年,传统的身份鉴别技术已经不足以满足人们的需求,在这种情况下,人脸识别技术脱颖而出,无论在科研方面还是在实践应用方面,人脸识别系统都取得了重大的突破,并且在各行各业也扮演着越来越重要的角色。
版权所有©2025 产品网