一般采用纯电容补偿方案。当然有条件的话串联阻尼电抗器,能减小合闸涌流对电容器金属极板的冲击,起保护电容器,减小系统电压波动第二种应用情况为:系统各次谐波明显,电压总谐波畸变率THDu>5%,对敏感设备已经造成影响,像无功补偿用电容,谐波***,造成严重过载,发热等、采取的应对措施是前段串联电抗器,改变补偿支路的阻抗特性,防止谐波的放大甚至谐振。系统中谐波次数、含量大小,我们可以通过测量仪表,如FLUK表,直观显示出来。下图为一层写字楼谐波测量通过大量的实地勘察,低压系统谐波次数、含量主要集中在13次以内,其中3次、5次、7次、9次、11次为重。我们知道了谐波对并联电容器的危害,对补偿稳定性的危害,就必须采取串联电抗器的办法那电抗器要怎么选,选多大的合适哪?看下图2——调谐次数横坐标为系统谐波次数,1为基波(频率50Hz)、2次谐波(频率100Hz)、
3次谐波(频率为150Hz)…;纵坐标为单元(电容+电抗)基波与谐波下阻抗比值;曲线为各类电抗率,曲线与横坐标的交点为P对应的调谐次数。见下表1曲线与横坐标交点的左侧,单元阻抗呈容性(capacitive),而系统总阻抗呈***,所以不发生串联或并联谐振,也无谐波电流放大风险。***了三次谐波***电容,对三次以上谐波也一样***效果。当电抗率选7%的组合单元时,坐标交点(调谐次数为3.78次),同样分析:
可补偿基波(1次)无功功率,***5次及以上谐波。但是3次谐波落在交点左侧,在f=150Hz下单元阻抗呈容性,系统总阻抗呈***,正负抵消,谐波阻抗减小,3次谐波电流增加,导致总电流增加。所以此种情况下,不能选择7%电抗率,应选14%电抗率。
一、前言为满足目前市场对多品种小批量织物的染色的需求,很多企业都应用了卷染机,因为该设备可进行间歇式生产,以目前纺织业的发展前景来看卷染机的应用市场会越来越广阔。卷染机控制方面要求具备自动记道、自动计数、自动换向、自动掉头、自动停车、防坠液等功能,在整个工艺过程中,要求保证布匹的张力和线速度恒定,因此对系统的自控控制水平要求较高。而国内较为传统的卷染机大部分采用双直流电机控制,只能达到近似的恒张力控制效果,
也有采用单变频器的卷染机,放卷采用异步电机直流制动的方式,收放卷用接触器在变频器和直流制动之间进行切换,以上这些方案,分析其原理,都是在较大误差情况下的一种近似结果,因此控制效果不尽如人意。进口的卷染机,有的采用伺服控制,有的是用价格昂贵的工程型变频器来实现,效果较为理想,但是对于国内的用户来说,成本压力很大。本文以一个工程实例来说明采用SKI600系列矢量重载变频器并巧妙地完成卷染机的工艺要求。巨型卷染机技术指标:门幅:1800--3600mm;卷径:1500mm;车速:20--150m\/min;温度:98℃;张力调整范围:
300~1000N;上图是卷染机工作的示意图,这是一个典型的中心卷曲控制系统。未染色的布匹首先通过上布电机卷曲到其中的一个辊筒上,在辊筒的传动轴上安装有计数用地接近开关,此时控制系统计下整卷布的道次,上卷完毕,采用人工的方式把布匹的一头卷到另外一个辊筒上面,待包覆紧密即可正常开始工作。
变频器开关电源的原理及维修维修部 杨晓明电源是每一个电路的重要组成部分,担负着为电路提供能量的重要作用,它是设备能够正常运行的重要保障。电源的种类很多,开关电源由于体积小、重量轻、、动态稳压效果好,因此被广泛应用到了各种电子设备中。下面就以UC3844开关电源芯片为例讲述一下开关电源的基本原理和在变频电路中的作用。
右图a-1所示为开关电源PWM波形调制芯片。该图为8脚双列直插封装。 7脚是芯片的电源输入端,该端在内部集成了稳压器和门限电压控制器,所以该芯片不用在外围设置稳压电路,只要接一只电阻即可。门限值为10V,当7脚输入电压低于10V,该芯片将禁止输出,处于保护状态。正常工作时该端电压约为12V—16V之间。 4脚是内部压控振荡器的定时端,通过接上合适的RC网络,使输出的PWM波控制在20KHZ—100KHZ之间。 a—1 2脚、3脚是输出取样反馈端,用于检测开关电源的输出,以便进行PWM调制控制,从而达到稳压的目的。在变频器系统中,开关电源需要输出:一组5V/DC、一组±12V/DC、四组20V/DC等多组电压。其中5V/DC 主要用作主板及控制板的供电,±12V/DC用作霍尔检测器件的供电,
四组20V/DC用作IGBT的触发供电。变频器的型号及品牌不同,其开关电源的电压值也不尽相同,但基本构架是一样的,在此仅以下图为例讲一讲开关电源的工作原理。 a—2 如图a—2所示:电源经D1—D4、C1、C2整流滤波之后,通过电阻R3到了UC3844的7脚电源正端,为其供电,UC3844通过检测当7脚电压大于10V时,控制内部压控振荡器开始工作,通过R8、C5将PWM的频率控制在要求范围之内。
随着电气传动技术,尤其是变频调速技术的发展,作为大容量传动的高压变频调速技术也得到了广泛的应用。高压电机利用高压变频器可以实现无级调速,满足生产工艺过程对电机调速控制的要求,以提高产品的产量和质量,又可大幅度节约能源,降低生产成本。近年来,各种高压变频器不断出现,高压变频器到目前为止还没有像低压变频器那样近乎统一的拓扑结构。根据高压组成方式可分为直接高压型和高-低-高型,根据有无中间直流环节来分,
可以分为交-交变频器和交-直-交变频器,在交-直-交变频器中,按中间直流滤波环节的不同,可分为电压源型和电流源型。高-低-高型变频器采用变压器实行输入,输出升压的方式,其实质上还是低压变频器,只不过从电网和电机两端来看是高压的,是受到功率器件电压等级技术条件的限制而采取的变通办法,需要输入,输出变压器,存在中间低压环节电流大,效率低下,可靠性下降,占地面积大等缺点,只用于一些小容量高压电机的简单调速。常规的交-交变频器由于受到输出频率的限制,只用在一些低速,大容量的特殊场合。直接高压交-直-交变频器直接高压输出,
无需输出变压器,,输出频率范围宽,应用较为广泛。我们将对目前使用较为广泛的几种直接高压输出交-直-交型变频器及其派生方案进行分析,指出各自的优缺点。评价高压变频器的指标主要有:成本,可靠性,对电网的谐波污染,输入功率因数,输出谐波,dv/dt,共模电压,系统效率,能否四象限运行等。
版权所有©2025 产品网