对一个管壳式换热器进行温度和压力载荷作用下的有限元强度分析,并对这两种载荷作用 下的结构应力响应做分类研究,然后对结构进行改进,作同样的分析。比较这些结果,得出考虑温度载荷作用下的换热器强度校核的规律和结构设计的特点。
管壳式换热器是化工、石油、轻工、能源等工业应用广泛的过程设备之一,它具有选材范围广,换热表面清洗较方便,适用性较强,处理能力大,能承受高温和高压等特点。管壳式换热器的结构设计主要依据是GB151[1],GB151 中关于换热器管板强度校核是根据弹性基础上薄板理论,在轴对称结构的条件下,将薄板的三维变形简化为二维梁式变形,由此来计算其强度的。而换热器壳体厚度的选择,主要是根据壳体所受到的壳程压力来确定。
换热器由于其工作特点,不仅有管程压力和壳程压力等载荷作用,而且还要受到工作介质的温度载荷作用。在GB151 中对压力载荷,给出了管板和壳体的尺寸选择,及固定管板兼作法兰的管板和壳体的连接方式。然而,对于在温度载荷作用下,这些尺寸却没有具体的说明要求。
本文通过一个管壳式换热器的强度校核,将载荷分类为压力载荷和温度载荷,来说明结构在这些载荷作用下的应力响应特点,进而提出该结构改进的意见。本文采用三维有限元的分析方法,来研究其内在规律。
管壳式换热器如何检测日常的温度呢?
温度是换热器运行中主要的操控工艺指标,通过在线仪器检测及检查换热器中各流体的进出口温度的变化,可以分析、判断介质流量的大小及换热情况的好坏和是否存在内漏等。要防止温度的急剧变化,因温度剧变会造成换热器内件,特别是管束与管板的膨胀和收缩不一致,导致产生温差应力,从而引起管束与管板脱离或局部变形及裂缝,还会加快腐蚀及产生热疲劳裂纹。
用水作为冷却介质的,水的出口温度好控制在38℃以下,不宜超过45 ℃。因为水温超过38℃,微生物的繁殖会明显加速,腐蚀成分的分解加快,引起管子腐蚀穿孔。同时已溶于水的碳酸氢钙、碳酸氢镁会受热分解形成沉淀,使换热器结垢越来越严重,影响设备的换热能力。通过对温度的检测和记录,可以计算传热系数。传热效率好坏主要表现在传热系数上,传热系数降低,则标志着换热器的效率降低。定期测量换热器两种介质的进出口温度、流量,计算出各时期的传热系数,并用坐标纸作出变化趋势图。它会是一条基本连续逐渐向下、切点斜率较小的平滑曲线。当传热系数低到不能满足工艺要求时,则应通过机械清洗或化学清洗来提高其传热系数,满足和维持工艺运行的需要。
版权所有©2025 产品网