拉曼光谱仪的工作原理
当一束频率为v0的单色光照射到样品上后,分子可以使入射光发生散射。大部分光只是改变光的传播方向,从而发生散射,而穿过分子的透射光的频率,仍与入射光的频率相同,这时,称这种散射称为瑞利散射;还有一种散射光,它约占总散射光强度的 10^-6~10^-10,该散射光不仅传播方向发生了改变,而且该散射光的频率也发生了改变,从而不同于激发光(入射光)的频率,因此称该散射光为拉曼散射。在拉曼散射中,散射光频率相对入射光频率减少的,称之为斯托克斯散射,因此相反的情况,频率增加的散射,称为反斯托克斯散射,斯托克斯散射通常要比反斯托克斯散射强得多,拉曼光谱仪通常大多测定的是斯托克斯散射,也统称为拉曼散射。散射光与入射光之间的频率差v称为拉曼位移,拉曼位移与入射光频率无关,它只与散射分子本身的结构有关。拉曼散射是由于分子极化率的改变而产生的(电子云发生变化)。拉曼位移取决于分子振动能级的变化,不同化学键或基团有特征的分子振动,ΔE反映了特定能级的变化,因此与之对应的拉曼位移也是特征的。这是拉曼光谱可以作为分子结构定性分析的依据。
拉曼光谱技术在宝石学研究中的局限性
1、拉曼光谱易受荧光的影响、因此对发荧光宝石的检测会产生一定的影响。
2、对于不透明或透明度差的宝石,利用拉曼光谱技术进行检测可能会在宝石表面留下痕迹而成为有损检测。
3、应用拉曼光谱鉴定宝石,是一种类比法,有时会受到标准拉曼图谱库的限制,尤其是对一些罕见宝石更是如此。此外对于某些颗粒细小的多晶集合体类玉石,很难得到有效的拉曼图谱。
新型光谱仪
新型光谱仪实在调制原理上所建立的仪器。
其实,光谱仪可以应用的范围很广,在农业、天文、汽车、生物、化学、镀膜、色度计量、环境检测、薄膜工业、食品、印刷、造纸、拉曼光谱、半导体工业、成分检测、颜色混合及匹配、生物***应用、荧光测量、宝石成分检测、氧浓度传感器、真空室镀膜过程监控、薄膜厚度测量、LED测量、发射光谱测量、紫外/可见吸收光谱测量、颜色测量等领域应用广泛。
版权所有©2024 产品网