本研讨利用自制的旋风式玫瑰花籽烘干机进行干燥工艺优化实验,在单要素实验的基础上,选取气流速度、干燥温度、分级器内孔直径3要素进行二次回归正交旋转组合试验,选用Design-Expert软件对实验数据进行分析和处理,确定醉佳工艺参数为:干燥温度85℃、气流速度19m/s、小型豆渣烘干机分级器内孔直径136mm。此条件下所得玫瑰花籽单位时间失水率的实际值与模型预测值相比,误差仅为0.01%/min。研讨结果解决了玫瑰花籽干燥功率低、干燥不均匀的问题,为玫瑰花籽的产业化提供了技能参阅。小型豆渣烘干机盛载着物料的小车队在轨迹上沿着从进料口到出料口的方向做间歇移动。本研讨对玫瑰花籽干燥工艺运用还处于小试阶段,有待进行大规模生产。
小型豆渣烘干机选用阶段式烘干工艺,将烘干进程分为多个阶段,每个阶段由若干个“升温+保温”进程组成。这种工艺实用性强,运用广泛。初期阶段,即低温慢速干燥,通过低温加热,模仿自然干燥,使紫菜失水;小车队的行进由顶推机推进,顶推机在小车队的后端进行顶推操作,每次使小车队向前移动一个小车长度的距离。中期阶段,即中温等速干燥,通过中温加热,是紫菜外形色彩到达预期要求;晚期阶段,即高温快速干燥,通过高温加热,使紫菜完全烘干。
温度传感器将实时采集烘干箱内的温度数据并传输至操控系统,当丈量温度大于设定温度时即关闭加热,打开排风机进行散热,当丈量温度小于设定温度时即启动加热。一起,主风机将加热的热空气送入烘干箱内,而排风机将热空气从烘干箱经导流管至加热器循环运用,节能环保提搞效率。在完好物料的干燥进程傍边,供热强度、方法、介质的速率、温湿度、压力等归于常量,虽然如此,但因为物料自身特征的不断改变,干燥进程依旧对错稳态的。
小型豆渣烘干机
小型豆渣烘干机选用自主研发的三筒七层内循环螺旋可控温度环保燃料锅炉供热;小型豆渣烘干机选用十层叶片S型循环传动的方法烘干物料,自动化操控模块主要由PLC设备构成;提升机选用自行设计的带有筛选、操控作物输入流量的模块和刺条皮带式传动带。
烘干室内流场散布的数学模型简化
本文所研究的对象是链板式菌草烘干机烘干室内的温度场散布问题,因而数值模仿区域定义为烘干室。由于空气作为热交换的介质对物料进行烘干,故考虑经过流场的模仿剖析得出温度的散布。需求对烘干室内部结构进行一些合理的简化,将进气系统表明为进口(inlet )、排气系统表明为出口(小型豆渣烘干机传动部件和翻转叶片设备对气流的阻碍作用暂时不考虑,但是需求表明出链板式传送带和菌草厚度等关键结构。由于咱们需求的是烘干机平稳运行时的温度场散布,故将此问题看作定常问题,在烘干室内气流穿过菌草层时能够使用FLUENT中的多孔介质模型完成计算。对于鲜枣的干制实验结果显示,干燥时刻为18h,传统天然干燥时刻为15d,遇上阴雨气候还要延长。Fluent中提供的多孔介质模型将多孔结构简化为一个动量源,在树立几许模型时,能够不必树立复杂的几许结构。
气流在小型豆渣烘干机烘干室内的活动能够看成是具有适当复杂性的湍流活动,求解流场操控方程适当于对流场散布的数值模仿。由于流场的操控方程一般具有非线性的特征,因而有必要利用离散的方法来求得近似解。
小型豆渣烘干机干燥过程中枸杞湿基含水率改变曲线,选用太阳能设备干燥,在干燥24h 今后,枸杞的湿基含水率由78% 下降至15% ,干制品契合出厂要求; 同样时刻内选用天然暴晒的枸杞湿基含水率只降到70% 左右,这种干燥方法枸杞的湿基含水率下降至15% ,需求120h。对于枸杞的干制,选用太阳能设备干燥所需的时刻( 24h) 较天然暴晒干燥的时刻( 120h) 缩短了80% ,干燥周期显着缩短。整个控制软件选用模块化结构进行编写设计,遵循模块内部数据结构紧凑,模块数据之间关系松散的原则,便于编写、调试、修正、增删。而且由于太阳能干燥设备各干燥阶段温湿度稳定在枸杞烘干的醉适温湿度范围内,干燥过程根本未呈现枸杞表皮硬化开裂现象。
太阳能干燥设备与天然暴晒两种干燥方法干制的枸杞产品的质量目标测定成果如表3 所示,小型豆渣烘干机干燥的产品黄酮、多糖、氨基酸等养分物质较天然暴晒产品略高,表明小型豆渣烘干机在干燥过程中对产品的养分损失较天然暴晒小,而其坏果率也显着低于天然暴晒,使用太阳能设备烘干,较高的烘干温度和较短干燥周期,且相对封闭的干燥环境隔绝了枸杞与外界环境的直接触摸,其菌落总数及大肠菌数量也低于天然暴晒。使用太阳能干燥设备干制的枸杞,其质量较天然暴晒获得枸杞有很大地提升。因为我国玉米出产规模较大,70时代初期才开始对玉米烘干设备进行研讨,玉米干燥设备较落后,因此研讨出产***的玉米烘干设备十分必要,本文就玉米干燥设备的进展进行了总述,为研讨适合我国实际情况的***小型豆渣烘干机供给理论依据。
版权所有©2025 产品网