鱼干烘干机辅佐电加热能量调理
当物料烘干工艺过程中,物料间的温升速率过慢,热泵机组自身的能量调理还不能满足要求时,控制器根据温度传感器输入的信息,打开辅佐电加热器,对通过冷凝器的空气进行二次加热,用于满足物料间的温升速率的要求。
鱼干烘干机的整体结构
以湿香菇500kg的目标容量建造烘干房,鱼干烘干机包含加热室和物料室两个部分,热泵机组的蒸发器部分放置在烘干房外部,冷凝器部分放置在烘干房内的加热室中,烘干房物料室上端设置有回风通道(回风通道设计详见第三章热泵型香菇烘干房不同送风方式比照分析),烘干房两旁边面接近顶端的上部分别设置有排湿/排热风机口,鱼干烘干机底端下部设有新风口,检修口位于烘干房旁边面接近底端的下部。鱼干烘干机以微处理器作为首要硬件部分的控制单元,鱼干烘干机以PID闭环控制办法设计了一款核桃主动烘干控制体系。烘干房的内部尺度为5400×2200×2100mm(长×宽×高),其间加热室内部尺寸为1500×2200×2100mm(长×宽×高),物料室内部尺度为3900×2200×2100mm(长×宽×高),鱼干烘干机新风口尺度为800×300mm(长×宽),排湿/排热风机口尺寸为350×350mm(长×宽),检修口尺度为800×500mm(高×宽)。
鱼干烘干机物理模型
针对热泵型香菇烘干房,对加热室和物料室树立4200×2200×2100mm(长×宽×高)的物理模型,模型中将香菇堆积的物料盘设定为模块化的多空介质,为了得出烘干房内较优的气流***方式,本次模仿对烘干室设计了四种不同的送风方式,种送风方式为侧送风上回有回风通道;第二种送风方式为鱼干烘干机侧送风上回无回风通道;第三种送风方式为下送风上回有回风通道;第四种送风方式为下送风上回无回风通道。相关人员需求对引起该现象的主要原因进行核实,在针对物料堵塞引起机械毛病的状况,需立刻停止设备工作状况,并按照相关的操作要求和规范对机械内部存在的物料进行清除。
鱼干烘干机工作过程中烘干房内的气流状态为湍流状态,考虑到鱼干烘干机烘房内的空气活动属于不行压缩的低速湍流,并且契合Boussinesq假设,烘干房内热空气与四周内壁的接触形成了约束流,而规范k-模型对于有壁面束缚的约束活动预测较为静确,因此本次鱼干烘干机模仿中选用规范 k-模型。在进行烘干作业的进程傍边,鱼干烘干机内部的原料吸不走也会导致内部物料起火。模仿所使用软件是由英国帝国理工学院所研制的Phoenics软件,Phoenics是世界上套商用核算流体与核算传热学软件,其通风模仿结果具有较强可靠性与静确性。
鱼干烘干机正交实验设计是一种研讨多要素多水平的设计办法,此设计办法根据正交性从实验中挑选出部分有代表性的点进行实验,经过对这些点的实验成果剖析了解实验的状况,正交实验设计是一种搞效、快捷的实验设计办法。因此,需要对香菇烘干进程中的工艺参数进行研究,以使热泵型香菇烘干房烘干后的香菇质量更优,且在烘干进程中使得热泵型烘干房能更搞效、节能。在针对鱼干烘干机的烘干工艺优化时,继续沿用传统烘干房香菇烘干工艺中温度的设定,既烘干开端温度定为35℃,烘干结束时温度定为62℃,在传统香菇烘干工艺的基础上,对热泵型香菇烘干房烘干工艺笼统出三个主要要素,既烘干时刻、排湿量、循环风速,并采纳实验对此三种要素进行不同水平的选择。传统烘干房烘干时刻较长,经过查阅文献以及菇农经验,针对热泵型香菇烘干房的烘干工艺,对烘干时刻给出两个水平,17小时和20小时。
对鱼干烘干机烘干过程中的排湿量设定大小两个水平,热泵型香菇烘干房在烘干过程中各阶段的排湿是由输入方针湿球温度和开端排湿的温度差进行控制的,比方当设定的方针湿球温度为a℃,且设定排湿温差为4℃时,当烘干房内湿球温度到达(a-4)℃时,排湿风机就自动启动开端排湿,而当设定排湿温差为2℃时,则烘干房内湿球温度到达(a-2)℃才开端排湿,排湿量就相对较小。针对新疆青皮核桃去皮后烘干所需求的时刻太长、工作量太大的现实问题,设计了一种核桃主动烘干控制体系。因而烘干房在烘干过程中的排湿量是由所设定间隔方针湿球温度的排湿温差所决议的。
鱼干烘干机
版权所有©2025 产品网