箱式烘干机信息推荐「多图」
作者:舜天机电2021/11/13 20:28:56









箱式烘干机分级器内孔直径D 取值150~160mm时,样品A、样品B实验的出籽率均大于50%,故烘干机使用此区间的内孔直径进行实验时,有未干燥或未干燥彻底的玫瑰花籽排出;分级器内孔直径D 取80~110mm 时,样品A、样品B实验的出籽率均低于20%,此时烘干机干燥后的玫瑰花籽无法正常排出;箱式烘干机分级器内孔直径D 取110~140mm时,样品B实验的出籽率逐步增大接近至100%,样品A实验的出籽率几乎为0。研讨结果显示:气流散布的均匀程度和物料在干燥室中的位置决议了物料的干燥均匀性。

综上所述分级器内孔直径D 取110~140mm 时,能够同时满足烘干机内玫瑰花籽安全贮藏含水率W0≤8%正常排出,油菜籽含水率W1=20.78%不出籽的设计要求。箱式烘干机干燥条件(介质的状态参数)对干燥的影响温度在热风干燥进程中,干燥空气(气流)是被作为干燥媒介参加干燥的。干燥温度对单位时刻失水率的影响玫瑰花籽品质受温度影响较大,应根据不同箱式烘干机类型严格控制干燥过程中的醉高料温。干燥机一般的干燥温度为75~85℃,不得超越90℃,故选取干燥器进风口温度T=60~90℃进行实验。实验时,称取玫瑰花籽样品A,每组5kg,取气流速度v=20m/s、分级器内孔直径D=140mm,测定进风口温度在60,70,80,90 ℃对单位时刻失水率的影响。

箱式烘干机

 结果表明:跟着温度的升高,单位时刻失水率逐步增大。整个控制软件选用模块化结构进行编写设计,遵循模块内部数据结构紧凑,模块数据之间关系松散的原则,便于编写、调试、修正、增删。温度从60℃增大到80℃时,单位时刻失水率增大显着,温度从80℃增大到90℃时,单位时刻失水率较高,且单位时间失水率根本维持在1%/min左右,可以猜测,温度持续增大,其单位时刻失水率变化很少,能量消耗将会大幅增加。故玫瑰花籽干燥温度宜取70~90℃。

箱式烘干机气流速度对单位时刻失水率的影响

实验时,称取玫瑰花籽样品A,每组5kg,取干燥温度T=80℃、分级器内孔直径D=140mm,测定进风口风速在17,19,22,25m/s时对单位时刻失水率的影响。



键盘及显示模块是箱式烘干机温控体系完***机交互的重要手段。本体系中显示器设定操作界面,包括:开机、设定、待机、运转、报警、完毕等6 个界面;键盘用来设定方针温度、时间、参数,以及操控体系的作业状况转化。加热器的热风通过导流板,一部分热风经出风孔吹出,一部分从导流板的四周吹出,使加热更均匀。显示器选用迪文屏幕类型DMT80480C070_03W,屏幕明晰,操作便利,反应灵敏,交互及时。设计键盘选用非编码键盘,选用中止方式作业。

温控体系设计(软件)

箱式烘干机经过操控器实时检测烘干箱内的温度、时间等相关信息,并依据预设的参数对数据进行分析处理,操控分级,监控温度传感器等部件作业,若发现异常,操控单元能自我毛病诊断并输出报警信号。室内的空气有些湿润,增加了排湿量,但不是太大,其目的是排除一部分水分,经过蒸腾阶段后,枣果内部可被蒸腾的水分逐步减少,蒸腾速度逐步缓慢,此时温度不宜太高,箱式烘干机内温度不低于50℃即可。整个控制软件选用模块化结构进行编写设计,遵循模块内部数据结构紧凑,模块数据之间关系松散的原则,便于编写、调试、修正、增删。

主程序设计

箱式烘干机主程序模块的首要作业是上电后,对体系进行初始化,构建体系整体软件结构。初始化包括对单片机的初始化,A/D 芯片初始化和串口初始化等。由于流场的操控方程一般具有非线性的特征,因而有必要利用离散的方法来求得近似解。初始化完成后进行毛病检测,包括:检测键盘、液晶屏,检测芯片以及单片机等芯片的作业,以保证体系的正常运转。如果存在毛病,则启动自我诊断功能,判别毛病类型,保存当前运转状况,输出报警信号,排除障碍后,进行复位***运转。体系病则等待温度、时间设定,若参数已经设定好,则判别体系运转键是否按下,若体系开始运转,将依次调用各个相关模块,循环操控直到体系停止运转。



箱式烘干机选用自主研发的三筒七层内循环螺旋可控温度环保燃料锅炉供热;箱式烘干机选用十层叶片S型循环传动的方法烘干物料,自动化操控模块主要由PLC设备构成;提升机选用自行设计的带有筛选、操控作物输入流量的模块和刺条皮带式传动带。

烘干室内流场散布的数学模型简化

本文所研究的对象是链板式菌草烘干机烘干室内的温度场散布问题,因而数值模仿区域定义为烘干室。由于空气作为热交换的介质对物料进行烘干,故考虑经过流场的模仿剖析得出温度的散布。对于鲜枣的干制实验结果显示,干燥时刻为18h,传统天然干燥时刻为15d,遇上阴雨气候还要延长。需求对烘干室内部结构进行一些合理的简化,将进气系统表明为进口(inlet )、排气系统表明为出口(箱式烘干机传动部件和翻转叶片设备对气流的阻碍作用暂时不考虑,但是需求表明出链板式传送带和菌草厚度等关键结构。由于咱们需求的是烘干机平稳运行时的温度场散布,故将此问题看作定常问题,在烘干室内气流穿过菌草层时能够使用FLUENT中的多孔介质模型完成计算。Fluent中提供的多孔介质模型将多孔结构简化为一个动量源,在树立几许模型时,能够不必树立复杂的几许结构。

气流在箱式烘干机烘干室内的活动能够看成是具有适当复杂性的湍流活动,求解流场操控方程适当于对流场散布的数值模仿。由于流场的操控方程一般具有非线性的特征,因而有必要利用离散的方法来求得近似解。



商户名称:潍坊舜天机电设备有限公司

版权所有©2025 产品网