电容去耦原理透彻分析与设计参考
电容退耦原理采用电容退耦是解决电源噪声问题的主要方法。这种方法对提高瞬态电流的响应速度,降低电源分配系统的阻抗都非常有效。对于电容退耦,很多资料中都有涉及,但是阐述的角度不同。有些是从局部电荷存储(即储能)的角度来说明,有些是从电源分配系统的阻抗的角度来说明,还有些资料的说明更为混乱,一会提储能,一会提阻抗,因此很多人在看资料的时候感到有些迷惑。其实,这两种提法,本质上是相同的,只不过看待问题的视角不同而已。当次级绕组相对初级(绕组)绕组以一定角度放置时,产生旋转电场。为了让大家有个清楚的认识,本文分别介绍一下这两种解释。从储能的角度来说明电容退耦原理。在制作电路板时,通常会在负载芯片周围放置很多电容,这些电容就起到电源退耦作用。
电容器常见故障原因及修理方法
一、一般电容故障现象:电容开路、击穿、漏电、通电后击穿
故障原因
1、元器件开路
电容器开路后,没有电容器的作用。不同电路中的电容器出现开路故障后,电路的具体故障现象不同。如滤波电容开路后出现交流声,耦合电容开路后无声等。
2、元器件击穿
电容器击穿后,失去电容器的作用,电容器两根引脚之间为通路,电容器的隔直作用消失,电路的直流电路出现故障,从而影响交流工作状态。
3、元器件漏电
电容器漏电时,导致电容器两极板之间绝缘性能下降,两极板之间存在漏电阻,有直流电流通过电容器,电容器的隔直性能变差,电容器的容量下降。当耦合电容器漏电时,将造成电路噪声大。这是小电容器中故障发生率比较高的故障,而且故障检测困难。
4、通电后击穿
电容器加上工作电压后击穿,断电后它又表现为不击穿,万用表检测时它不表现击穿的特征,通电情况下测量电容两端的直流电压为零或者很低,电容性能变坏。
处理故障电容器应注意的安全事项
处理故障电容器应在断开电容器的断路器,拉开断路器两则的隔离开关,并对电容器组经放电电阻放电后进行。电容器组经放电电阻(放电变压器或放电电压互感器)放电以后,由于部分残存电荷一时放不尽,仍应进行一次人工放电。放电时先将接地线接地端接好,再用接地棒多次对电容器放电,直至无放电火花及放电声为止,然后将接地端固定好。③如果电容器同架空线联接时,可用合适的避雷器来进行大气过电压保护。由于故障电容器可能发生引线接触不良、内部断线或熔丝熔断等,因此有部分电荷可能未放尽,所以检修人员在接触故障电容器之前,还应戴上绝缘手套,先用短路线将故障电容器两极短接,然后方动手拆卸和更换。
就平板电视来说,为了能承受大电流,就需要进一步降低电容的ESR。其原因是,在数字 设备中,随着功能的增加,电路的电流有越来越大的趋势。
对于在液晶电视中进行MPEG编解1码工作的图像处理电路来说,2006年一块芯片中电源电路的电流约为3A。据调查,为了应对全H D (全高清)等要求而增大电路的规模以后,芯片中的电流将增加到8A~9A左右。
如果ESR小,则在有大电流流动时,电容输出电压的下降量也小。伴随着电流增大而来的降低ESR的要求,有可能成为推进电容替换进程的主要原因。相对于铝电解电容将近1Ω的ESR来说,多层陶瓷电容的ESR很小,还不到10mΩ。此类事故多是由于系统内、外过电压,电容器内部严重故障所引起的。导电性高分子电容的ESR通常为几十mΩ,ESR比较小的则在10mΩ以下。铝电解电容也在开发ESR比较小的产品, 其ESR大约是一般产品的1/2~1/3。
版权所有©2025 产品网