电力电容器制造业发展是从20世纪50年代1开始的,发展至今已经有50多年的历史。总体说来,我国电力电容器发展历史可分为3个阶段。
1阶段,20世纪70年代以前,基本上以电容器纸为固体介质,以矿物油或PCB为液体介质。
2阶段,70-80年代初,聚膜与电容器纸复合介质电容器取代了全纸电容器,它以十二***苯、硅油、二芳基、异丙1基等为液体介质。 这些新介质的采用,使膜纸复合介质电容器的损耗仅为全纸电容器的1/3,约为0.8??1.5W/kvar。产品发热问题得到改善,单台容量提高近20倍。同时,由于新液体介质具有良好的吸气性能,使电容器运行及发生故障时外壳膨胀爆1破的可能性大为减少,大大提高了电网安全运行的可靠性。处理故障电容器应注意的安全事项处理故障电容器应在断开电容器的断路器,拉开断路器两则的隔离开关,并对电容器组经放电电阻放电后进行。
3阶段,从80年代初开始,全膜电容器逐渐代替膜纸复合介质产品。它以聚膜为固体介质,以二芳基、苄基或SAS-70为液体介质,电容器的单台容量达到334-1000kvar,电容器损耗降低到0.1-0.2W/kvar,可靠性得到了很大的提高。
我国电力电容器当前生产的主要品种有高、低压并联电容器及成套装置、滤波电容器及成套装置、电热电容器、耦合电容器及电容式电压互感器、试验室用电容器及成套装置等。其中高、低压并联电容器及成套装置包括自愈式电容器、高压并联电容器、集合式电容器及成套装置。(3)当电容器套管的绝缘不能保证时,在有绝缘性能特定要求的地方请不要使用。
该新型材料非常整洁,但对于COF基超级电容器来说现在仍处于早期研究阶段,因为必须存在足够的证据表明它可以应用于汽车等领域。但Dichtel指出,该新型材料可以经受成千上万次的充放电循环,且没有任何退化的迹象。同时他指出,还有很多其他的氧化还原-活性分子可以用来制作COF材料,并且可能性能更好,目前关于COF的研究只是处于起始阶段。中和电容连接于三极管基极与集电极之间,用于克服三极管极间电容而引起的自激振荡。”但是,不管怎麽说,他们已经做的足够好了。
***和耦合
(1)信号耦合
由于电容器通过交流电而阻隔直流信号,它们通常用于分离信号的交流和直流分量。该方法称为AC耦合或“电容耦合”。
(2)去耦
去耦电容器是用于保护电路的一部分免受另一电路的影响的电容器,例如***噪声或瞬变。由其他电路元件引起的噪声通过电容器分流,减少了对电路的其余部件的影响。
(3)噪声***,尖峰脉冲和缓冲器
当感应电路打开时,通过电感的电流会迅速塌陷,在开关或继电器的开路上产生大的电压。如果电感足够大,则能量可能产生火花,导致接触点氧化。新打开的电路上的缓冲电容器为这种脉冲绕过接触点创造了一条路径,从而保持了其寿命。高可靠性开关电源是一种采用开关式控制的直流稳压电源,它以小型、轻量和高1效率的特点被广泛应用于各种通信设备、家用电器、计算机及其终端设备。缓冲电容器通常与串联的低电阻一起使用。这种电阻器、电容器组合可在单个封装中使用。
电力电容器的接通和断开
(1)电力电容器组在接通前应用兆欧表检查放电网络。
(2)接通和断开电容器组时,必须考虑以下几点:
①当汇流排(母线)上的电压超过1.1倍额定电压允许值时,禁止将电容器组接入电网。
②在电容器组自电网断开后1min内不得重新接入,但自动重复接入情况除外。
③在接通和断开电容器组时,要选用不能产生***过电压的断路器,并且断路器的额定电流不应低于1.3倍电容器组的额定电流。
版权所有©2025 产品网