电容去耦原理透彻分析与设计参考
电容退耦原理采用电容退耦是解决电源噪声问题的主要方法。这种方法对提高瞬态电流的响应速度,降低电源分配系统的阻抗都非常有效。测量电容器时对电阻档的选择,电阻档(Ω)被测电容器范围(uF)充电时间(S20M0。对于电容退耦,很多资料中都有涉及,但是阐述的角度不同。有些是从局部电荷存储(即储能)的角度来说明,有些是从电源分配系统的阻抗的角度来说明,还有些资料的说明更为混乱,一会提储能,一会提阻抗,因此很多人在看资料的时候感到有些迷惑。其实,这两种提法,本质上是相同的,只不过看待问题的视角不同而已。为了让大家有个清楚的认识,本文分别介绍一下这两种解释。从储能的角度来说明电容退耦原理。在制作电路板时,通常会在负载芯片周围放置很多电容,这些电容就起到电源退耦作用。
作为超级电容器,其电荷的转移很快,充、放电的速度以秒为单位,而传统电池的充电则需要数个小时。理想状态下,该电容器可以应用于诸如电动汽车再生制动系统中,使用制动能量来产生电流并实现电流的即时存储。
麻烦的是,由于表面积的限制,超级电容器的容量是有限的,远远低于当电池以卷的形式进行储电的电容量。公司曾经试图增加电极的表面积,例如将多孔导电材料(如目前市场上占主导地位的活性炭)应用于电容器中。但是,他们总是希望做得更好。
解决有限电容的一个方案是制备表面积非常高的材料,如碳纳米管和石墨烯。这两种物质是由单层碳原子构成,已经用于制造高容量的超级电容器。导电性高分子电容的ESR通常为几十mΩ,ESR比较小的则在10mΩ以下。但这两种材料本身十分昂贵,生产相对困难,实现大规模应用不大容易。另一种氧化还原-活化分子,该分子容易吸收电子,然后释放电子。但氧化还原-活化分子材料有自己的不足。在经过一些电子周期之后,材料本身就会遭到***,其他材料则无法制作多孔的超级电容器。
电解电容器介绍
电解电容器是开关电源中一次和二次回路滤波电路中重要的器件之一。而且流过电容器的纹波电流越大,在电容器ESR上产生的损耗也会随之增大,由功率损耗产生的热会明显降低电解电容器的使用寿命。通常,电解电容器的等效电路可以认为是阳极箔的容量、损坏的阳极氧化膜绝缘电阻、具体有单向导电性的阳极氧化膜(相当于二极管)并联,与电极和引出端子的电阻,阳极氧化膜与电解质的电阻,阴极箔容量,电极及引出端子所引出的等效电感的串联。
高可靠性
开关电源是一种采用开关式控制的直流稳压电源,它以小型、轻量和高1效率的特点被广泛应用于各种通信设备、家用电器、计算机及其终端设备。
作为输入滤波和平滑作用的铝电解电容器,它的质量和可靠性直接影响到开关电源的可靠性。一旦铝电解电容器失效,就会导致开关稳压电源的故障。
开关稳压电源用铝电解电容器的失效模式有击穿失效、开路失效、漏液失效及电参数超差失效:击穿失效又分为介质击穿和热击穿,对于大功率和大电流输出的开关电源用电解电容器,热击穿失效常占一定比例;电腐蚀导致铝引出条断裂和电容器芯子干涸,使开关稳压电源用铝电解电容器开路失效的主要失效模式;漏液是开关稳压电源用铝电解电容器常见的失效模式,由于使用环境及工作状态较严酷,常发生漏液失效;开关稳压电源用铝电解电容器在使用中常见的失效模式是电容量减少、漏电流增大及损耗角正切值增大。下面从电容器纹波电流的定义出发逐步分析电容器纹波电流额定值定义中出现的问题,***后通过实例说明电解电容器纹波电流能力的扩展。
版权所有©2025 产品网