主要的光学薄膜器件包括反射膜、减反射膜、偏振膜、干涉滤光片和分光镜等等,它们在国民经济和防建设中得到广泛的应用,获得了科学技术工作者的日益重视。例如采用减反射膜后可使复杂的光学镜头的光通量损失成十倍的减小;采用高反射膜比的反射镜可使激光器的输出功率成倍提高;利用光学薄膜可提高硅电池的效率和稳定性。
光学薄膜的特点是:表面光滑,膜层之间的界面呈几何分割;膜层的折射率在界面上可以发生跃变,但在膜层内是连续的;可以是透明介质,也可以是吸收介质;可以是法向均匀的,也可以是法向不均匀的。
光学薄膜在我们的生活中无处不在,从精密及光学设备、显示器设备到日常生活中的光学薄膜应用;比方说,平时戴的眼镜、数码相机、各式家电用品,或者是钱上的防伪技术,皆能被称之为光学薄膜技术应用之延伸。倘若没有光学薄膜技术作为发展基础,近代光电、通讯或是镭射技术将无法有所进展,这也显示出光学薄膜技术研究发展的重要性。
光学镀膜夹具绕公共轴旋转,同时绕其自身轴旋转。光控和晶控处于行星驱动机械装置的中部,驱动轴遮挡晶控。背面的大开口通向附加的高真空泵。基底加热系统由4个石英灯组成,真空室的两边各两个。薄膜沉积的传统方法一直是热蒸发,或采用电阻加热蒸发源或采用电子束蒸发源。薄膜特性主要决定于沉积原子的能量,传统蒸发中原子的能量仅约沉积导致电离化蒸汽的直接沉积并且给正在生长的膜增加活化能,离子源将束流从离子指向基底表面和正在生长的薄膜来改善传统电子束蒸发的薄膜特性。AF处理成品
光学镀膜已成为大部分光学产品不可或缺的一道工艺,薄膜通过干涉光的透过率、波段、折射率等参数来修正光学产品自身材质所带来的天然不足。光学镀膜在光学零件表面镀膜的目的是为了达到减少或增加光的反射、分束、分色、滤光、偏振等要求。为了消除光学零件表面的反射损失,称为增透膜或减反射膜。光学零件表面镀膜后,光在膜层层上多次反射和透射,可以得到不同的强度分布,这是干涉镀膜的基本原理。光学镀膜方法材料氧化锆:白色重质结晶态,具有高的折射率和耐高温性能,化学性质稳定,纯度高,用其制备高质量氧化锆镀膜,不出崩点。AF处理成品