光学薄膜在高真空度的镀膜腔中实现。常规镀膜工艺要求升高基底温度(通常约为300℃);而较***的技术,如离子辅助沉积(IAD)可在室温下进行。薄膜沉积的传统方法一直是热蒸发,或采用电阻加热蒸发源或采用电子束蒸发源。薄膜特性主要决定于沉积原子的能量,传统蒸发中原子的能量仅约0.1eV。薄膜的光学性质,如折射率、吸收和激光损伤阈值,主要依赖于膜层的显微结构。薄膜材料、残余气压和基底温度都可能影响薄膜的显微结构。黑色外壳硬化加工供应
光学镀膜是指在光学零件表面上镀上一层(或多层)金属(或介质)薄膜的工艺过程。在可见光和红外线波段范围内,大多数金属的反射率都可达到78%~98%,但不可高于98%。对于YAG激光采用普通光学玻璃作为反射镜、输出镜和透射光学元件材料,都不能达到全反射镜的99%以上要求。不同应用时输出镜有不同透过率的要求,因此必须采用光学镀膜方法。提高成像质量,涂镀一层或多层透明介质膜,称为增透膜或减反射膜。随着激光技术的发展,对膜层的反射率和透过率有不同的要求,促进了多层高反射膜和宽带增透膜的发展。黑色外壳硬化加工供应
光学镀膜由薄的分层介质构成的,通过界面传播光束的一类光学介质材料。光学薄膜的应用始于20世纪30年代。现代,光学薄膜已广泛用于光学和光电子技术领域,制造各种光学仪器。简单的光学薄膜模型是表面光滑、各向同性的均匀介质薄层。在这种情况下,可以用光的干涉理论来研究光学薄膜的光学性质。
光学薄膜的特点是:表面光滑,膜层之间的界面呈几何分割,膜层的折射率在界面上可以发生跃变,但在膜层内是连续的,可以是透明介质,也可以是光学薄膜
黑色外壳硬化加工供应
光学零件表面镀膜后,光在膜层层上多次反射和透射,形成多光束干涉,控制膜层的折射率和厚度,可以得到不同的强度分布,这是干涉镀膜的基本原理。一般是10的-5次方的真空 然后采用真空蒸镀溅射法 将靶材的金属溅射到玻璃上为各种应用需要,
分为两种情况,膜层反射可见光透过红外光;膜层反射红外光透过可见光。
前者用于避免发热的照明场合,后者可以用于放映机中保护胶片。
利用高反射膜制造偏振反光膜、彩色分光膜、冷光膜和干涉滤光片等。提高成像质量,涂镀一层或多层透明介质膜,称为增透膜或减反射膜。高反射膜从大口径的天文望远镜和各种激光器开始、一直到新型建筑物的大窗镀膜茉莉,都很需要。增透膜则大量用于照相和各种激光器开始、一直到新型建筑物的大窗镀膜玻璃,都很需要。增透膜则大量用于照相机和电视摄象机的镜头上。黑色外壳硬化加工供应