空气预热器的腐蚀与积灰是如何形成的?
由于空气预热器处于锅炉内烟温区,特别是未级空气预热器的冷端,空气温度、烟气温度也,受热面壁温,因而易产生腐蚀和积灰。当燃用含硫量较高的燃料时,生成的 SO 2 和 SO 3 气体,与烟气中的水蒸气生成亚***或***蒸汽。在排烟温度低于酸蒸汽时,***蒸汽便凝结在受热面上,对金属壁面产生严重腐蚀。同时,酸液体也会粘结烟气中的灰分,越积越多,易产生堵灰。循环流化床锅炉尾部烟道受热面积灰,受热面表面传热系数下降,使吸热量下降,排烟温度上升,锅炉热效率下降。如果积灰严重,则会增加烟道阻力,导致引风机负荷增大,厂用电率增加。长期腐蚀和积灰会造成受热面的损坏和泄漏。当泄漏不严重时,可以维持运行,但使引风机负荷增加,限制了锅炉出力,严重影响锅炉运行的经济性。
热管技术在工业余热回收中的利用
热管及热管换热器近年来在石油化工中的应用已愈来愈受到人们的重视。它具有体积紧凑、压力降小、可以控制腐蚀、一端***不会引起两种换热流体互混等优点。不仅提高了设备的热效率而其可靠性也大为增加,减少了停车次数。这些特点使得热管换热器在余热回收利用方面具有广阔的前景,然而作为热管本身的其他方面的特点如均温性、热流密度可变性、可变导性、可异性化等特点更加引人注意。早在70年代,国外一些研究者就已经开始注意到热管的这些特点可以在化学反应设备和原子反应堆工程中发挥重要作用,并设计出一系列的热管式反应器,这些设计的特点是:利用热管的等温性均化床层温度得到较高的转化率和收率,利用热管的可变热导特性控制反应床温度不使超温或过冷,利用热管的源汇分隔特性提高设备使用的可靠性,利用热管热流体密度可调的特点改善和强化反应设备的传热条件。应当指出的是,热管化学反应器的开发研究远比热管换热器的研究困难的多,因为涉及原料的组成、催化剂活性、停留时间等一系列因素,这就使得开发速度进展缓慢。但由于这种开发前景诱人,广大研究者始终埋头于这方面的研究并取得了良好的进展。
石油化工中加热炉余热回收
目前工业上加热炉烟气余热回收使用的热管空气预热器主要有两种布置方式:一种是将热管换热器置于加热炉顶称为置顶式,其优点是只用一台空气鼓风机,烟气凭烟囱抽力通过热管换热器,可以省去一台引风机。缺点是热管换热器的阻力必须设计在烟囱抽力允许的范围以内。另一方面热管换热器放置在炉顶增加了炉体支架的荷载。这两点限制了热管换热器的管排数和重量,可能影响回收的热量。另一种形式是将热管换热器布置在地面上成为落地式。这种设计方式的优点是热管换热器的体积、重量、烟气侧的阻力限制都不十分严格。地面的维修也方便。缺点是需要增加一台引风机,增加了动力消耗。此外,其管线也比置顶式复杂一些。从换热效果来看,落地式布置有利于充分回收热量,但是主要取决于现成改造的条件。将置顶式安放类型的一例热管换热器在相同原始参数条件下改为落地式,由于增加了引风机,因此可使烟气流速大大提高,这不仅提高了烟气侧传热系数,而且对消除热管束的积灰有利。实践证明引风机的电耗在整个效益的平衡中所占份额是非常有限的。
版权所有©2024 产品网