高分子热敏电阻是由聚合物基体和使其导电的碳黑粒子组成。由于这种材料具有一定的导电能力,因而其上会有电流通过。当有过电流通过热敏电阻时,产生的热量将使其膨胀,从而碳黑粒子将分离、其电阻将上升。这将促使热敏电阻更快的产生热量,膨胀得更大,进一步使电阻升高。当温度达到125℃时,电阻变化显著,从而使电流明显减小。此时流过热敏电阻的小电流足以使其保持在这个温度和处于高阻状态。当故障排除后,热敏电阻收缩至原来的形状重新将碳黑粒子联结起来,从而使高分子热敏电阻很快冷却并回复到原来的低电阻状态,这样又可以循环工作了。
热敏电阻分为两种,一种是负温度系数(NTC),一种是正温度系数(PTC),NTC是通过阻值变化对电路进行保护,温度越高阻值越大;PTC又叫过流保护片,通过电流对用电器进行保护,如电流超出PTC额定工作电流时,将会断开。两种都是可***多次保护电子元件。热敏电阻本身就是一种温度传感器。热敏电阻感受温度变化后,是自身的电阻值发生变化。通过一个桥式电路或者更简单的分压电路,可以把电阻的变化转换为电压信号。把这个电压信号输入到具有A/D转换器的单片机里,就可以测量温度并进行温度控制。
热敏电阻的优点:
灵敏度高,热敏电阻的温度系数要比金属大10-100倍以上,能够检测出10-6℃的温度变化;工作温度范围宽,常温器件适用于-55℃~315℃,高温器件适用温度高于315℃(目前高可达到2000℃),低温器件适用于-273℃~-55℃;体积小,能够测量其他温度计无法测量空间的温度。作为温度传感器测量温度用,作为温度控制用。作为温度补偿使用
热敏电阻通常为一款高阻抗、电阻性器件,因此当您需要将热敏电阻的阻值转换为电压值时,该器件可以简化其中的一个接口问题。然而更具挑战性的接口问题是,如何利用线性 ADC 以数字形式捕获热敏电阻的非线。热敏电阻包括两种基本的类型,分别为正温度系数热敏电阻和负温度系数热敏电阻。负温度系数热敏电阻非常适用于高精度温度测量。要确定热敏电阻周围的温度,其中,T为开氏温度;RT为热敏电阻在温度T时的阻值;而 A0、A1和A3则是由热敏电阻生产厂商提供的常数。
版权所有©2025 产品网