光纤陀螺是一种非常重要的角速率传感器件,具有寿命长、启动快、精度高、耗电少、动态范围宽等优点,在航空航天、导航等领域起到了极为关键的作用。光纤陀螺包括干涉式陀螺仪和谐振式陀螺仪两种,它们都是根据塞格尼克的理论发展起来的。塞格尼克理论的要点是这样的:当光束在一个环形的通道中前进时,如果环形通道本身具有一个转动速度,那么光线沿着通道转动的方向前进所需要的时间要比沿着这个通道转动相反的方向前进所需要的时间要多。也就是说当光学环路转动时,在不同的前进方向上,光学环路的光程相对于环路在静止时的光程都会产生变化。利用这种光程的变化,如果使不同方向上前进的光之间产生干涉来测量环路的转动速度,这样就可以制造出干涉式光纤陀螺仪,如果利用这种环路光程的变化来实现在环路中不断循环的光之间的干涉,也就是通过调整光纤环路的光的谐振频率进而测量环路的转动速度,就可以制造出谐振式的光纤陀螺仪。从这个简单的介绍可以看出,干涉式陀螺仪在实现干涉时的光程差小,所以它所要求的光源可以有较大的频谱宽度,而谐振式的陀螺仪在实现干涉时,它的光程差较大,所以它所要求的光源必须有很好的单色性。
光纤陀螺仪与传统的机械陀螺仪相比,优点是全固态,没有旋转部件和摩擦部件,寿命长,动态范围大,瞬时启动,结构简单,尺寸小,重量轻。与激光陀螺仪相比,光纤陀螺仪没有闭锁问题,也不用在石英块精密加工出光路,成本相对较低。罗经是船舶重要的导航设备,主要有磁罗经和电罗经两种。随着光纤陀螺技术的发展和商业化水平的提高,光纤陀螺仪已成为船用通导设备中的新成员,民用光纤陀螺不仅可以作为高准确度航向的信息源,实现自动找北、指北,而且还可以得出航向回转速率、横、纵摇角度和航向的旋转速率等可靠数据,进一步推动船舶的自动化发展,保证了船舶的操纵效果和保证航行安全。
光纤陀螺的应用是光纤陀螺研究的一个重要方向。由于光纤陀螺自身的优越性和其潜在应用的广泛性,三轴 MEMS光纤陀螺仪可结合三轴MEMS加速度计实现所谓六轴产品,三轴陀螺仪可以同时测定 6 个方向的位置、移动轨迹和加速度。从 MEMS光纤陀螺仪的应用方向来看,陀螺仪能够测量沿一个轴或几个轴运动的角速度,可与MEMS 加速度计(加速计)形成优势互补,如果组合使用加速度计和陀螺仪这两种传感器,可能更好地跟踪并捕获三维空间的完整运动, 从而提高陀螺仪精度。光纤陀螺主要在汽车导航、***和姿态控制、机器人等许多精 度要求不高的民用领域中有广阔的应用。
光纤陀螺是根据萨格纳克效应发展而来。所谓萨格纳克效应,就是在一个闭合光路中采用一个相同的光源发射出两束特征相等,方向相反的光,它们终会在一探测点汇合。光纤陀螺包括干涉式陀螺仪和谐振式陀螺仪两种,由于光纤陀螺仪具有结构紧凑,灵敏度高,工作可靠等等优点,所以目前光纤陀螺仪在很多的领域已经完全取代了机械式的传统的陀螺仪,成为现代导航仪器中的关键部件。和光纤陀螺仪同时发展的除了环式激光陀螺仪外,还有现代集成式的振动陀螺仪,集成式的振动陀螺仪具有更高的集成度,体积更小,也是现代陀螺仪的一个重要的发展方向。因为光纤陀螺中是两束光在传播,它们的光路不同,会产生漂移。由于环境影响,光纤会产生随机正交偏振态,使得光程发生改变,引起漂移。而且由于光的瑞丽背向散射,会产生噪声,影响陀螺精度。
版权所有©2025 产品网