如何使用矢量网络分析仪(VNA)进行时域测试分析
在测量一条传输线上各处的阻抗值以及在时间域或距离域中对被测器件中所存在的问题,例如器件特征的不连续性进行检查时,时域分析功能是非常有用的。时域测试结果的显示形式更为直观,直接就可以看到被测器件 (DUT) 的特征;在测量传输线系统的宽带响应特征方面,与其他测试技术相比,时域测试技术通过把每个不连续性的影响显示为时间或距离函数而能给出更富有含义的信息。这份资料主要讲述讨论如何使用矢量网络分析仪 (VNA) 进行时域测试分析,希望让具有频域测试知识背景的工程师们能深入了解怎样从频域测试数据 (S 参数) 得到时域测试结果,以及怎样将时域测试结果应用到对射频系统中常见问题的分析上。
网络分析仪一种能在宽频带内进行扫描测量以确定网络参量的综合性
网络分析仪一种能在宽频带内进行扫描测量以确定网络参量的综合性微波测量仪器。全称是微波网络分析仪。网络分析仪是测量网络参数的一种新型仪器,可直接测量有源或无源、可逆或不可逆的双口和单口网络的复数散射参数,并以扫频方式给出各散射参数的幅度、相位频率特性。自动网络分析仪能对测量结果逐点进行误差修正,并换算出其他几十种网络参数,如输入反射系数、输出反射系数、电压驻波比、阻抗(或导纳)、衰减(或增益)、相移和群等传输参数以及隔离度和定向度等。
触发系统检测启动测量(触发)的信号并控制是否进行测量
触发系统 触发系统检测启动测量(触发)的信号并控制是否进行测量。 在网络分析仪8753ES上,触发状态对于主通道和辅助通道组成的通道对可用(两对通道:通道1和3以及通道2和4)。对于每一对通道,都有三种状态可用:保持、等待触发和测量。发生触发事件时,将会对一对处于等待触发状态的通道执行扫描操作。如果另一对也处于等待触发状态,那么下一触发事件也会对其进行扫描操作。当打开扫描条件耦合通道时,则所有通道都具有保持、等待触发和测量状态。出现这种情况时,则在等待触发状态下发生触发事件时,将会对所有通道进行扫描操作。例如,当您将通道1和2设置为去耦并扫描每个通道时,需要将每个通道设置为保持状态并对每条通道执行触发事件。 在E5071C上,触发系统包括整个系统以及每条通道的状态。由于所有通道都具有触发事件,因此,存在三种系统级的状态:保持、等待触发和测量。另一方面,每条通道还存在两种状态:空闲和启动。对于处在空闲状态的通道,不会执行测量,而对于处在启动状态的通道,在事件发生后将按序启动测量。当所有通道都处于空闲状态时,从整个系统看,E5071C处于保持状态。即使只存在一个处于启动状态的通道,E5071C也会进入等待触发或测量状态。从等待触发转换到测量状态的过程中,会从通道号MIN的通道开始,对处于启动状态的通道执行测量。
频谱分析仪的原理与特点
频谱分析仪的原理与特点 早期的频谱分析仪实质上是一台扫频接收机,输入信号与本地振荡信号在混频器变频后,经过一组并联的不同中心频率的带通滤波器,使输入信号显示在一组带通滤波器限定的频率轴上。显然,由于带通滤波器由无源元件构成,频谱分析器整体上显得很笨重,而且频率分辨率不高。既然傅里叶变换可把输入信号分解成分立的频率分量,同样可起着滤波器类似的作用,借助快速傅里叶变换电路代替低通滤波器,使频谱分析仪的构成简化,分辨率,测量时间缩短,扫频范围扩大,这 就是现代频谱分析仪的优点了。 矢量信号分析仪是在预定频率范围内自动测量电路增益与相应的仪器,它有内部的扫频频率源或可控制的外部信号源。 其功能是测量对输入该扫频信号的被测电路的增益与相位,因而它的电路结构与频谱分析仪相似。频谱分析仪需要测量未知的和任意的输入频率,矢量信号分析仪则只测量自身的或受控的已知频率;频谱分析仪只测量输入信号的幅度(标量仪器),矢量信号分析仪则测量输入信号的幅度和相位(矢量仪器)。由此可见,矢量信号分析仪的电路结构比频谱分析仪复杂,价位也较高。现代的矢量信号分析仪也采用快速傅里叶变换,以下介绍它们的异同。
版权所有©2024 产品网