小粒径无孔单分散层析介质用于病毒的分离纯化
传统的层析介质填料都是多孔的微球,因为多孔微球材料的比表面积大,因而可以对一般生物分子分离提供较高的吸附载量。层析介质的孔径一般都小于2000?(通常都小于100纳米)。而很多病毒颗粒的粒径一般都大于20纳米,有的甚至都超过100纳米。由于体积排阻的原因,病毒颗粒无法扩散进入层析介质的孔内,因而在层析吸附病毒颗粒时只有介质微球的外表面可以利用,孔内表面积由于体积排阻的原因而无法吸附病毒颗粒。然而,病毒样品中的杂质分子一般都比病毒小,因而可以扩散进入层析介质孔内被吸附在里面。由于传统层析介质孔内表面积远远大于介质微球外表面积,杂质吸附往往由于孔内表面积的存在而非常显著,吸附洗脱时杂质含量因而较高,病毒颗粒纯化效果往往不理想。无孔层析介质由于没有大量只能容纳杂质进入而病毒颗粒无法扩散进入的内孔,病毒颗粒在介质外表面的层析吸附量虽然不会有明显变化,但样品中的杂质被层析吸附的量会显著减少。因此经无孔层析填料层析洗脱后,病毒样品的分离纯度显著提高。
整体柱制备方法是把单体和致孔剂混合液填充到柱子中,经过升温产生聚合反应,在反应过程利用相分离原理形成贯穿孔结构整体柱,由于整个柱子是一个整体,可以保持较高的孔隙率和较高的机械强度。由于整体柱的孔隙率大, 可以减小流动相阻力和路径扩散, 提高可及比表面积及病毒吸附载量,从而提高病毒的分离效率。整体柱层析已被证明是病毒及病毒类大分子比较理想的分离方法。但目前整体柱制备方法有很大的局限性,因为在整体柱合成过程中,其孔径大小是通过反应过程中相分离来决定的,而相分离容易受到温度,反应速度等影响,因此孔径大小不容易控制,导致柱间批次的稳定性和重复性差,而且不容易制备能满足生产需求的大尺寸整体柱。这些因素是整体柱不能广泛用于病毒的分离纯化的主要原因。
抗l体的层析分离步骤基本都可以采用标准化的三步曲:步用Protein A介质进行抗l体捕获和浓缩;第二步用离子交换进行中间纯化以去除多聚体,宿主蛋白等杂质;第三步是精纯去除剩余DNA,Endotoxin,Protein A 等微量杂质。在这三步抗l体的分离纯化过程中,步的Protein A亲和捕获占据分离纯化成本80%以上,也是下游分离纯化的瓶颈所在。亲和层析之所以成本高的主要原因:首先是Protein A 价格昂贵,其价格是普通层析介质十几倍;第二,Protein A使用寿命短,一般离子交换填料使用寿命多达1000次,而亲和填料寿命通常在100-200次;第三,Protein A 用于抗l体的捕获和浓缩,需要处理大体积的发酵液,而亲和步骤载量往往又低于阴阳离子交换层析,使得亲和层析介质使用量比中间纯化或精纯的要多得多。因此,要降低抗l体的生产成本,解决抗l体的生产瓶颈关键在于改进步Protein A 亲和捕获。
高柱床提高抗l体批处理量和生产效率 目前GE 生产的Protein A 软胶占据抗l体分离纯化的90%市场。由于软胶机械强度差,耐压受限(压力小于3公斤),为了防止柱床塌陷,一般柱床只装到15cm高度,严重限制抗l体的生产效率,增加抗l体的生产成本。柱床高不仅可以增加抗l体的批处理量,提供抗l体的生产效率,还可以减少QA及QC等配套人员的工作量,减少纯化系统的数量及设备***。其实,通过高柱床提高生产效率的方法早在成本更加敏感的胰岛素、白蛋白、多肽等生物药生产上成功实现。但要增加柱床高度,Protein A 介质必须具有高机械强度性能,以满足高柱床高流速下产生的压力。纳微开发的新一代单分散Protein A 介质是以高交联的单分散聚丙l烯酸酯为基质,机械强度高,耐压性能好。因此柱床可以装到40cm以上高度,使得抗l体批处理量及生产效率可以提高一倍以上,不仅减少设备***及厂房的占用面积,而且大幅度降低生产成本。另外实验证明提高柱床还可以提高介质有效载量和利用率,柱床提高一倍,抗l体上样量至少增加2.2倍(见表)。高柱床可以解决因为上游发酵规模的扩大及蛋白表达量的增加而带来下游分离纯化生产瓶颈的问题。另外软胶放大往往只能通过等高放大,而纳微生产的高机械强度Protein A 可以等保留时间放大。
版权所有©2024 产品网