***脑化学物质实时分析系统交换膜
为了提高代氧化酶型生物传感器的选择性,研究人员曾在传感器的表面再覆盖一层离子交换膜[°]或者电化学聚合膜',从而***电化学活性物质(如抗坏血酸)向电极表面的扩散和的电化学氧化。抗坏血酸对于传感器的干扰也可通过在电极表面或在线电化学传感器上游引人抗坏血酸氧化酶修饰层或酶柱,预先氧化抗坏血酸进而消耗其含量实现(]。Baker等l在铂微电极表面电聚合邻苯二胺薄膜,并修饰以甲酯,醋酸纤维素等作为稳定剂,结合生物识别元件(氧化酶)实现了大鼠脑内的原位电化学分析。Li等(通过在葡萄糖氧化酶修饰的电极上电聚合一层邻苯二胺薄膜,提高了对葡萄糖的选择性,并将该阵列电极成功用于大鼠扩散性***过程中葡萄糖,O。和电生理活动的同时测定。他们发现,在SD过程中,脑内葡萄糖和氧分压会发生明显的变化。Chatard等l5利用气相沉积的方法在直径7 um 的碳纤维表面镀铂,再电聚合一层间苯二胺薄膜,较好地***了内源性电活性分子向电极表面的扩散。通过使用葡萄糖氧化酶和乳酸氧化酶,他们研制出了对脑***创伤较小,但对于葡萄糖和乳酸具有良好响应的电化学生物传感器,成功用于脑***生理病理模型中葡萄糖和乳酸动态变化的研究。他们还发现,在SD过程中,传统微电极和碳纤维微电极对葡萄糖和乳酸的响应表现出较大差异。
***脑化学物质实时分析系统多酶协同电化学生物传感器的分析
***系统中存在着一类重要化学物质,如乙酰[)、ATP1%'1 ,y-氨基丁酸R等,既没有电化学活性,也缺少相对应的氧化酶或脱氢酶识别元件,利用一般的电化学生物传感原理很难实现其直接检测。因此,多酶串联反应的电化学生物传感器应运而生。如乙酰的传感分析可同时利用乙酰酯酶(Acetylcholine oxidase,AChE)和氧化酶(Choline,ChOx ) ,通过检测酶促反应过程中H,0。的生成量实现乙酰的传感分析。但是,在***系统中,除抗坏血酸、尿酸等具有电化学活性的物质外,细胞间液中的浓度比乙酰的浓度一般高1000倍左右,这些物质都会干扰乙酰的测定。因此,消除和抗坏血酸的干扰是乙酰分析的关键。Niwa等!R]在微透析取样-在线电化学检测系统研制的过程中,在乙酰电化学传感器的上游引入固定有氧化酶和***酶( Catalase )的微柱,先将及其氧化产生的H,0,消耗掉,从而避免对乙酰的干扰。为了降低抗坏血酸的干扰,他们在AChE-ChOx/Os-gel-HRP修饰层上修饰了Nafion 膜,阻止带负电荷的抗坏血酸向电极表面扩散。基于此,他们建立了乙酰的高选择在线电化学分析方法,在大鼠海马脑切片上,成功检测到电刺激诱导的胞外乙酰浓度的升高。
脑化学物质实时分析系统
Burmeister等°设计了一种多位点的微电极阵列,实现了脑内和乙酰的同时原位测定。为了排除抗坏血酸和多巴胺的干扰,首先在铂电极表面电聚合一层间苯二胺膜。两个铂记录位点只修饰氧化酶,用于获取的浓度信息;另两个位点同时修饰乙酰酯酶和氧化酶,其电流信号与前者的差值即可用于乙酰的定量分析。
版权所有©2025 产品网