***脑化学物质实时分析系统优势
极高的检测选择性,纳米材料修饰电极实现脑内物质检测的选择性;
经过多年的技术积累,采用***的纳米材料修饰电极来实现脑内特定物质检测。电极进行长时间的实验验证,具有重现性高、响应灵敏度好、能够避免脑内常见物质的干扰、对目标物具有高度的选择性等一系列优点。
近无损检测,电极直径小至10μ米,***损伤小;
系统所采用的检测电极为韧性极强碳纤维材料所构筑的电极,具有较好生物兼容性,且电极的尺寸,对电极进行修饰后其直径也可低至10微米,二在线采用微透析探针尺寸也低至0.2-0.5毫米,电极或探针植入过程中均可避免对血管及***的***,对脑***产生的创伤可忽略。而且由于电极和探针尺寸小的特点,能对一些较小的特定脑区或亚区进行检测,满足特异性及性的需求。
***脑化学物质实时分析系统基于脱氢酶电化学生物传感器的分析
基于脱氢酶电化学生物传感器的分析:
与氧化酶型生物传感器相比,脱氢酶型生物传感器不依赖于O,且能够在较低的氧化电位下工作,因此应具有良好的抗干扰能力。由于大部分脱氢酶自身并不包含辅酶因子,该类电化学生物传感器常需外加辅酶因子(如NAD') , 协助完成酶对底物的催化。但是.辅酶的还原态(NADH)电化学氧化速率较率。
***脑化学物质实时分析系统电化学催化剂
对底物进行识别和传感过程中,脱氢酶型生物传感器通常需使用外加辅酶和电化学催化剂。将三者稳定地固定于电极的表面,形成一体化的传感器,这是该领域研究的挑战之一。通常情况下,电催化剂可通过吸附或电化学聚合的方式固定在电极表面,脱氢酶亦可通过表面吸附或交联的方式固定在电极表面。但将三者在电极表面进行有效的复合,形成有利于酶与辅酶、辅酶与电催化剂之间有效电子传递的生物电化学表界面是其关键。围绕这些问题, Yu等[?合成了NAD'作为对离子的离子液体,利用该离子液体和MCG分子与单壁碳纳米管(Single-walled carbon nanotubes ,SWNTs)之间的相互作用,制备了以MG为电化学催化剂的凝胶。由于SWNTs的存在,所制备的凝胶具有很好的导电性,有利于MG的电子转移。而且,该凝胶可通过研磨的方式固定于电极的表面,从而简化了制备方法骤,有效降低了不同传感器之间的差异。通过结合脱氢酶(如葡萄糖脱氢酶) ,即可制备基于脱氢酶的电化学生物传感器。
***脑化学物质实时分析系统概述
摘要脑细胞外间隙(Extracellular space,ECS)是指细胞膜外充满液体的空间,约占脑体积的1/5。作为***元和胶质细胞赖以生存的环境,ECS在为细胞输送物质的同时,又能保障***元静息电位的稳定和动作电位的发生,与大脑的基本功能如突触传递,记忆,睡眠和***的过程等息息相关。本文着重介绍了ECS的基本生物物理特性,综述了利用电化学和成像方法开展体积分数和迂曲度研究的主要进展,并阐述了ECS在生理和病理过程中的变化规律。
版权所有©2025 产品网