用TS模型和多模型组合预测冷凝器污垢。以实验装置中的3处壁温、污管的出入口温度、污管中流体的流速和污管热阻为输入,建立基于径向基***网络的污垢预测模型,对筛选出的160组数据进行预测,与BP网络相比,该网络预测污垢热阻的收敛速度和精度都优于BP网络。早在上世纪六十年代就有学者首先提出污垢热阻随时间的变化是沉积率与剥蚀率之差这一结垢模型,将污垢热阻随时间的变化关系归纳为线性污垢模型、幂律污垢模型、降律污垢模型、渐近污垢增长模型,而且己有基于上述方法制成的仪器仪表,对污垢清洗具有重要的指导作用。但是,管壳式换热器结垢对其内部流动换热性能影响的研究相对较少。在支撑板附近,流体流速变大,形成射流,并且由于支撑板阻挡,在支撑板前面和尾部产生二次流,能有效冲刷管壁,减薄流动边界层,起到强化传热作用。
采用的模型为大庆油田***原稳站生产用油一油管壳式换热器,内部流通介质为,内部含有细沙等杂质,这些杂质也是导致换热器内部结垢的主要因素。对于管壳式换热器,换热管直径相对很小,数量众多,容易发生堵塞和结垢,而且对换热管的清洗和更换十分困难,管壳式换热器管程内部的流通介质为比较清洁的流体。综合油一油管壳式换热器此特点,本课题着重研究换热器壳程侧的结垢。换热器管道的缺陷发生在支撑板附近,已成为铁磁性换热管***监测区域。
根据大庆油田***原稳站油一油管壳式换热器实体结构尺寸,该换热器内部结构极为复杂,折流板、换热管数量众多,换热管直径0.032m,壳程直径1.4m,换热器长度为1 Om。换热器体积巨大,换热管直径与换热器长度的比值小,利用CFD前处理软件对其进行网格处理困难,网格数量太多,对计算机配置的要求非常高。结果显示,旋流片能起到扰流作用,并使流体强烈地冲刷传热管壁面强化传热。
冷凝器制造厂家边界条件:入口为速度入口边界,出口为压力出口边界,。对于没有定义的边界面软件默认为墙体边界。在本课题中,根据大庆油田***产量,原稳站管壳式换热器壳程入口速度在之间,根据物性和模型尺寸,计算得出换热器壳程的雷诺数之间,所以换热器壳程内部流动为层流,多相流模型选为混合模型,混合物模型可用于两相流或多相流(流体或颗粒)。采用有限体积法,使用分离式求***,稳态隐式格式求解;速度压力稱合方式采用基于交错网格的算法;流通介质为含砂,物性参数为等效温度下的常量;因此,换热器在线检测技术开发与应用是提高粗加工装置运行安全性的手段之一。假设入口来流的速度均勾分布,忽略重力影响,壳体壁面和折流板采用不可滲透、无滑移绝热边界。使用速度入口和压力出口边界,采用层流的模型;选用二阶迎风格式。
换热器内砂沉积对结垢位置的影响
换热器内管壁结垢主要受其液体介质含砂浓度的影响,对管壳式换热器壳程流场进行了液一固两相流数值模拟,根据模拟结果分析,确定换热器的主要砂沉积位置。壳程为沙子和的两相流动,沙子的粒径根据现场采集的数据大约在0.2mm-O.}mm之间。本次研究选用沙子粒径为0.2mm和0.4tn m,沙子的体积分数选为10%,壳程进口流速为0.7m/s,对管壳式换热器的壳程流场进行数值模拟。砂子体积分布的位置选取结果为沿换热器管长方向的四个截面,其中,z=-0.7n:为管壳式换热器壳程出I:l处的一个截而,z二一0.39m与z=0.016m为靠近管壳式换热器折流板的一个截面,z=0.7m为管壳式换热器壳程入I-I处的一个截面。单弓形折流板管壳式换热器物理模型复杂,因此选用适应性强的正四面体和金字塔形非结构化网格,使用GAMBIT划分网格。
版权所有©2025 产品网