De BF和Catalano LA等人近提出一个新型沉浸粒子换热器,它使用非常小的固体颗粒作为中间媒介来执行两个气体在不同的温度之间流动的热传导,开发了一种一维模型的理论计算换热管长度,确保规定的热交换和评价粒子特性的影响;提供了一个数值程序设计优化热交换器的其他几何参数,比如直径和角度的入口和出口管道和粒子注入模式。对用于火力发电厂的换热器,换热温度通常提供高于8000C,为了满足这一条件,热交换器应该选区特殊的材料一一陶瓷,Monteiro DB等人门用CFD模拟来评估雷诺数在500到1500之间时传热因子和摩擦因子,比较了模拟结果与实验数据。2mm的流动能很好的带动砂流动,导致换热器整个砂的体积分布较均匀,整个壳程的含砂量都较小,接近入2类石油。
单弓形折流板管壳式换热器物理模型复杂,因此选用适应性强的正四面体和金字塔形非结构化网格,使用GAMBIT划分网格。网格的数量直接决定了计算速度和精度。网格过少,将不到流场的流动特性;网格过多,一方面会严重消耗计算机资源,另一方面大量的数值耗散积累会影响计算结果的正确性。所以进行网格的***性验证时十分必要的。以一个单弓形折流板管壳式换热器模型为例进行网格***性验证。共三套网格:换热器整体均为四面体,终网格数量为1,521,014个;壳程为四面体网格,管程及壳程进出口管为六面体网格,终网格数量为I ,952,621个;由面到体依次画网格,终网格数量为2,175,849个。国内外己有的研究,对于管壳式换热器内漏问题的数值模拟研究相对较少。后面两套网格计算结果相差小于60%综合考虑计算精度与计算花费,选取第二套网格:终网格数量为1,952,621个。
管壳式换热器运行过程中的速度矢量分布,在换热器运行过程中,换热器壳程入口段的速度矢量值在0.4m/s;川页着折流板走向,换热器壳程内砂的速度矢量值在0.6m/s至2m/s之间变化,在折流板上方的砂速度;在折流板逆向换热器壳程内介质流动方向的背部,固体砂的速度矢量值,大约为0. I m/s。这是由于折流板的阻挡作用,降低了砂的速度。当砂粒径较大更容易在速度降低区域形成砂沉积,卫比砂粒径0.2m m时更为明显。(2)研究油田原稳站用油一油管壳式换热器运行过程中,含砂对换热器壳程流场分布的影响,研究壳程流场内的含砂量分布情况。当砂粒径为0.4mm,换热器运行稳定时,管壳式换热器壳程入u处的含砂率较高,大约在so%左右,壳程整体砂体积变化范围在5%-20%之间,由于本次分析的砂粒径较大,为0.4mm,故在壳程折流板根部有少量砂沉积,但沉积区占整个壳程的体积分数低于5%。
版权所有©2025 产品网