由于釜内设计压力为0.22MPa,选取机械密封212-90。支撑按JB/T4712.4-2007《容器支座》选择A4 支座。在对客户之前用的反应釜使用过程中,机封部分在使用一段时间后出现微量***,在此次设计中增加了底轴承来控制轴的径向跳动,延长了机械密封的使用寿命。根据GB150-1998内外压圆筒、封头强度计算方法,先分别假设内筒体厚度:为δn1=18mm,内下封头为δn2=16mm。针对客户提出反应物料有少量粗化晶粒,在此次设计过程中特别在内筒四周设置了挡板,增强了搅拌的均匀程度,在之后用户反馈意见收到用户满意的评价。:从安全的角度出发, 给出反应釜顶盖与筒体焊接, 在一侧开人孔的结构。基于开人孔的位置悖于常规, 先采用常规设计方法设计出顶盖厚度, 然后分别采用无力矩理论和有限元软件ANSYS作了应力分析, 给出人孔接管与顶盖及筒体相贯线上的一系列应力分布曲线, 并参照JB4732— 95《压力容器分析设计标准》作了强度评定, 结果表明强度不足。然后采用内部贴补强圈的局部补强结构, 经过二次分析评定, 强度满足要求。并对设备的无损检测作了相关说明。
由于顶盖所受的内压(0.7 MPa)远大于其外压(0.1 MPa), 所以下面的分析只针对其承受内压的工作状态进行分析。顶盖的理论应力分析顶盖为标准椭圆型封头, 椭圆型封头的长轴a=500 mm, 短轴b=250 mm, 封头的名义厚度按照前面设计值Sn =16 mm, 按照无力矩理论给出顶盖的经向和环向应力分布曲线可以看出, 在距中心大约425 mm处,环向应力等于0, 该处是环向应力由拉应力改变为压应力的交界处, 而顶盖开人孔位置正经此处。不过常规PID控制器的功能实现依赖于相应的数学模型,反应釜实际应用中,反应机理比较复杂,参数具有变化性特点,同时极易受到外界的干扰,影响数学模型的性,增加了参数调整的难度。以上应力状况是针对不开孔的封头的。对此处曲率变化较大部位进行开孔, 必使应力复杂化。为此对按常规设计得出的顶盖的壁厚提出了质疑。
热油的热容量较大, 因此在布置内蛇管冷却面时, 应适当增大冷却面。树脂反应完成后采用外设板式冷却器进行终的冷却。热负荷的确定应将工艺需热量及反应釜传热面的设计综合考虑。此外,化工反应釜的容器内部空间与体积较大,而容器口部较小,也会因残留杂质的长时间使用造成在容器内壁堆积,如果得不到及时清理,对其正常化工反应及正常作业使用都会造成不利影响。对间歇式反应釜来说, 工艺需热量按需热阶段计算, 但这不能作为终的热负荷。热负荷必须根据反应釜的传热计算得出, 在设备尺寸确定后, 换热面积F 已固定。要增大换热量, 就要从提高油温和增加流速着手使K 与△ t 增大, 以适应工艺的需要。不考虑设备的传热设计, 或宽打窄用地提出热负荷是不可取的, 这样往往造成锅炉或热油炉容量偏大。
从化工生产的实际来说,反应难以避免会放热,使得热量分布不够均匀。若没有及时排出热量,那么会使得反应釜内的温度增加,极易引发“爆聚”问题。此次设计的不锈钢反应釜是为一万吨有机颜料车间设备改进与更新及工艺优化过程使用的。若余热排放过多,会使得整体稳定性被降低,影响化工产品的质量和效益,因此必须做好温度的有效控制.从化工生产的实际来说,反应釜的温度控制多采用常规PID 控制方法。此方法虽然控制原理比较简单,具有不错的稳定性,而且控制系统的可靠性比较好,参数调整很方便。
反应釜的炉温控制实践,运用常规PID 控制法,可有效控制动态特性,比如温度惯性大以及容量滞后等。若化工生产对控制速度以及控制精度的要求不高,那么运用常规PID 控制法可获得不错的效果。采用双向液压锁作为保压元件,使压紧液压缸及加料口启闭液压缸始终保持正常工作压力,防止因油液泄漏失压而造成密封失效。不过常规PID 控制器的功能实现依赖于相应的数学模型,反应釜实际应用中,反应机理比较复杂,参数具有变化性特点,同时极易受到外界的干扰,影响数学模型的性,增加了参数调整的难度。基于此,要进行PID控制器的优化,应用模糊RBF ***网络PID 控制法,对反应釜PID 控制进行优化以及改进。从模糊RBF ***网络PID 控制法的应用实际来说,其构建的PID 控制系统在实际运行中实现稳定运行,需要的时间很少而且超调量很小,增强了炉温的控制精度,提高了生产效率。除此之外,系统的抗干扰性能很强,系统的自适应能力比较强,具有较好的鲁棒性。通过在线整定PID 参数,能够快速适应控制系统的变化,使得系统运行保持稳定的状态.
版权所有©2024 产品网