根据现场场地布置,并结合参考了化工设备标准反应釜尺寸,选取其内径Di1=Φ1800mm,按充装系数0.85 计算, 实际容积为V=6/0.85=7.05m3。按GB/T25198-2010《压力容器封头》选取椭圆形封头,查其容积V=0.827m3 , 形状系数K=1 。则筒体高度为:h=(7.05-0.827x2)/ (πx0.92)=2.12m。夹套选取Di2=Φ2000mm。通过用户提供的工况,在参照GB150-1998《钢制压力容器》确定釜体内设计压力位工作压力的1.1 倍,即设计压力Pc1 为0.2x1.1=0.22MPa 设计温度依据夹套选取了t1=164℃,夹套依据用户使用过程中的蒸汽的温度查阅在相应温度下的饱和蒸汽压为0.6 MPa,故我选取了夹套设计压力为Pc2=0.6MPa,设计温度为t2=164℃,焊接接头系数Φ取0.85。热负荷必须根据反应釜的传热计算得出,在设备尺寸确定后,换热面积F已固定。
由于用户单位提供的介质具有腐蚀性,通过与用户沟通介质的腐蚀性及对材质的焊接性的把握, 选取了釜体结构采用00Cr17Ni14Mo2,厚度负偏差C2=0.8mm,腐蚀余量C1=0mm。通过查询GB150-1998《钢制压力容器》中材料的设计温度下许用应力与其试验温度许用应力通过插值法可以算00Cr17Ni14Mo2 材质试验温度许用应力[σ]=118MPa,设计温度许用应力 [σ]t=114.48MPa,试验温度下屈服点 σs=177 MPa,夹套采用Q235-B 材质,厚度负偏差C2 =0.8mm,腐蚀余量C1=1mm。其试验温度许用应力 [σ]=113MPa,设计温度许用应力[σ]t=110.76 MPa,试验温度下屈服点σs =235MPa。在对客户之前用的反应釜使用过程中,机封部分在使用一段时间后出现微量***,在此次设计中增加了底轴承来控制轴的径向跳动,延长了机械密封的使用寿命。
反应釜设备加料口安装有球铰式压盖和加料漏斗, 压紧力可根据釜内压力无级调节, 以确保加料口的密封。通过旋转油缸的动作, 实现压紧动作与加料动作的有序转换。卸料口处安装有密封环和滑动轨道, 压紧液压缸推动密封***楔块, 将出料仓盖与密封环***压紧;启闭液压缸安装在出料仓盖下部, 带动出料仓盖沿滑动轨道做前后自由滑动, 实现卸料口的开闭。采用双向液压锁作为保压元件, 使压紧液压缸及加料口启闭液压缸始终保持正常工作压力, 防止因油液泄漏失压而造成密封失效。再按照文献[1]的设计方法,考虑到顶盖密集开孔的削弱和搅拌器等附件重量的影响,对顶盖进行整体补强设计,终顶盖厚度圆整到8mm。
该化工反应釜结构优化与改进方案是针对其传统反应釜结构及其作业影响,能够有效解决其化工反应中温度控制困难以及容器内部清洗困难等问题,从而有效防止化工反应釜作业过程中超压及腐蚀等问题发生,确保化工生产的安全性。值得注意的是,首先,针对传统化工反应釜结构在化工反应中搅拌不理想问题,通过在反应釜的反应腔内进行两个搅拌装置的增加设置,并且在每个搅拌轴上进行减速器安装应用,对搅拌轴的底部还安装设置有4层搅拌片,各层之间保持相互垂直状态,每层分别有两片,其搅拌片的角度设置对液体流动具有较大的适宜性,搅拌片的表面还进行了导料孔布置,使两个搅拌装置呈相反方向进行搅拌运行,以对原有反应釜结构的搅拌效果进行优化,以促进反应腔内物料的反应更加。另一方面从经济的角度考虑,所使用的材料为0Cr18Ni9奥氏体不锈钢,价格昂贵,如果增加一对容器兰(约1万元),则提高了容器的制造成本。
众所周知, 在化学制药行业中, 反应釜是很关键的设备, 但由于在反应的过程中往往物料十分复杂, 且有许多介质具有很强的腐蚀性, 因此反应釜的选材就尤为重要,如果选材不当, 设备就会受到各种腐蚀, 直接影响其使用寿命。双相不锈钢是一类集耐蚀、高强度和易于加工制造等诸多优异性能于一体的钢种。应用研究的结果表明, 双相不锈钢在抗晶间腐蚀和应力腐蚀方面, 特别是耐氯化物腐蚀的性能优于奥氏体不锈钢。但目前双相不锈钢用于设备制造的数量还远远低于奥氏体不锈钢, 本文是将双相不锈钢用于反应釜的设计作为一个实例和大家共同探讨。众所周知,在化学制药行业中,反应釜是很关键的设备,但由于在反应的过程中往往物料十分复杂,且有许多介质具有很强的腐蚀性,因此反应釜的选材就尤为重要,如果选材不当,设备就会受到各种腐蚀,直接影响其使用寿命。
版权所有©2024 产品网