真空耙式烘干设备信息推荐「誉金机械」
作者:誉金机械2022/6/28 1:17:06











真空耙式烘干设备用蒸汽等为热源间接加热物料并在真空条件下脱湿,尾气经过滤、冷凝除湿后由真空泵排出。真空耙式烘干设备管路设计主要包括管路系统的组成、管路的压力和温度、管径、管路阻力、管型选择等。本文将 MVR技术应用于耙式干燥系统,提出用罗茨蒸汽压缩机替换该系统中的真空泵,将干燥过程脱出的湿分(二次蒸汽)压缩以提高压力和温度,再经增湿(消除过热)和补充少量生蒸汽后作为热源使用。不仅节省了大量热能,还节省了冷量,节能效果显著。该系统特别适合热敏性、易氧化和湿分须回收的物料的干燥。





被干燥物料可以是粉粒状、膏状、浆状,也可以是溶液(此时包含蒸发、结晶和干燥过程)。换热器实际传热面积需预留20%余量,假设换热器中冷水25℃进入换热后50℃流出,根据前文计算蒸汽流量33。本文提出了 MVR 耙式干燥系统工艺流程;设计了实验装置的工艺流程,进行了物料热量衡算和主要设备工艺计算,绘制了带控制点工艺流程图、真空耙式烘干设备和丝网除沫器装配图和设备管道布置图,搭建了MVR 耙式干燥实验装置。







MVR技术在固体干燥领域的应用,其中难点在于加热蒸汽与干燥物料之间的传热,且热传导作为真空耙式烘干设备MVR系统的主要传热方式,其中一个问题是接触热阻的存在会严重影响传热,使得传热效果会大大减小,然而如何减小热阻,强化传热至今仍是一个难题。在该真空耙式烘干设备系统中,使用MFS子系统中排出的冷却海水作为MVC子系统的测试物料。鉴于国内外成功工业化应用的MVR真空耙式烘干设备系统,以及近些年国内外学者在 MVR 技术在蒸发浓缩领域应用研究所取得的一系列成果,可以发现目前MVR 技术的研究及其工业应用主要都是集中在处理溶液等领域,而这些单元操作的主要特点就是沸点升高较低,就工业应用而言主要集中在制盐、海水淡化等领域。






传统的耙式干燥系统用蒸汽等为热源间接加热物料并在真空条件下脱湿,尾气经过滤、冷凝除湿后由真空泵排出。传统的耙式干燥系统用蒸汽(或热水等)通入夹套和中空轴耙齿间接加热物料,一般在真空条件下脱湿,尾气一般有两种处理方法,一是排出后直接排放掉,但是浪费大量热量的同时还污染环境。本文将机械蒸汽再压缩技术应用于干燥领域,提出了 MVR 耙式干燥系统工艺流程,并设计出一套可工业应用的工艺系统。MVR耙式干燥系统用罗茨蒸汽压缩机替换耙式干燥系统中的真空泵,将干燥过程脱出的湿分(二次蒸汽)压缩以提高压力和温度,再经增湿(消除过热)和补充少量生蒸汽后作为热源使用。





不仅节省了真空耙式烘干设备大量热能,还节省了冷量,节能效果显著。孔板流量计是目前使用比较普遍的差压式测量计,但由于孔板流量计压损大、精度等级低、维护麻烦等原因,已经逐渐被替换掉。该系统特别适合热敏性、易氧化和湿分须回收的物料的干燥。在这些领域之所以能得到广泛的研究则是由MVR 技术的特性而决定的,与该领域不同的高浓度液体、固体干燥等方向的 MVR技术工业应用的研究几乎还没有,目前更多的是在理论上对该技术与其他干燥技术联用时的特性进行分析,对于 MVR 在固体干燥方面还有待于深入研究。






真空耙式烘干设备的回转活塞式压缩机又分为罗茨压缩机和螺杆压缩机这两大类。罗茨压缩机主要是由一对对称的转子和壳体组成。采用罗茨压缩机替代原干燥系统中的真空泵,根据干燥物料的不同可以选择不同的干燥压力,特别是对于热敏性物料可以实现真空干燥。通过转子的旋转将气体从低压端吸入,并将其输送到高压端,气体在转子内并不会被压缩。因此其流量受到转速的严格控制,只要控制其转速,流量也就得到控制,所以进行小流量下的稳定运行。螺杆式压缩机这是由主副螺杆及壳体组成。气体随着螺杆转动而前进,并且螺杆对气体体积进行压缩。其压缩比主要由螺旋的尺寸大小及出口位置共同决定。螺杆式压缩机体积小、重量轻、维护容易,但需要对压缩腔室进行润滑,容易使得压缩气体混入油污


商户名称:临朐誉金机械设备有限公司

版权所有©2024 产品网