该研究通过MVR过热蒸汽流化床干燥技术、凯斯工程过热蒸汽干燥技术等各种不同的干燥流程,进一步对比分析传统干燥技术与新型干燥技术,探讨各种技术和当前状态相对的优缺点及其局限性,研究探讨了低级煤的干燥特性以及相关特性研究时煤样的各种影响因素。化工耙式烘干机使用机械蒸汽再压缩技术的干燥系统会因为压缩机和需增加干燥器换热面积等原因使得成本增加;为此建立了一个可以供直接分析使用的数学模型,可以用于确定系统的压缩比,而此模型主要依赖于五个参数:特定的干燥器能耗比以及压缩机的能耗比、电力和能源的价格比、干燥机物料干燥前后湿度差和干燥机内的干燥压力。MVR技术已经在国外节能领域得到了广泛关注,并不断得到世界各国的认可和推广应用。
被化工耙式烘干机干燥物料可以是粉粒状、膏状、浆状,也可以是溶液(此时包含蒸发、结晶和干燥过程)。为了测试该工艺系统的性能,设计了一套用于实验目的的 MVR 耙式干燥实验系统,对 MVR 耙式干燥系统需要的主要设备进行选型计算,根据实验工艺流程,搭建基于耙式干燥机的MVR耙式干燥实验系统装置,在此装置上进行系统相关性能测试。此外,由于干燥时间减少二分之一,被干燥抑料的色光明显提高,且能耗减少百分之五十,这些优点都是老式耙干机的。此系统可以进行浓缩、蒸发、干燥等多项操作,故以水、碳酸钠溶液作为干燥物料进行实验分析测试。
化工耙式烘干机系统对于实验室研究而言较简便且测试数据也相对不精准,为满足实验研究,确保实验的准确性,因此设计了一套用于实验室中试研究使用的 MVR 耙式干燥实验系统,该系统主要设备有蒸汽发生器、流量计、减压阀、耙式干燥器、丝网除沫器、罗茨压缩机、蒸汽减温器、疏水阀、换热器、热水表、辅助设备及管路组成。33kg/h,增加一定余量故此处按40kg/h气液混合物(其中有0。
化工耙式烘干机的蒸汽发生器产生的生蒸汽计量后通过减压阀加入耙式干燥机中充当热源,物料受热湿份蒸发产生二次蒸汽,二次蒸汽经过丝网除沫器去除粉尘和液滴,进入罗茨压缩机增压升温后,蒸汽减温器喷水去除过热使压缩后的二次蒸汽饱和,并加入部分生蒸汽后作为热源重复利用,蒸汽在干燥机夹套和中空轴内释放潜热冷凝,经过疏水阀排出,换热器可以对疏水阀泄漏的部分蒸汽进一步冷凝确保实验准确,热水表对冷凝水计量。现在该公司开发出的MVR系统已经成熟应用于重油开采废水回收中,据资料显示,该系统每蒸发1吨水仅需消耗15~16。
化工耙式烘干机分离器是 MVR 系统中必不可少的一个重要组成部分,其主要目的是除去二次蒸汽中携带的小液滴和物料粉尘,防止对压缩机叶片造成伤害。气液分离器按照原理不同可以分为重力沉降、折流分离、离心分离、填充分离。本MVR干燥系统处理的气液量不大,液体、粉末等夹杂较少,同时为使蒸汽管路尽可能紧凑,所以将分离器直接安装在干燥机筒体中部气体出口处。考虑该系统仅作实验使用,且丝网除沫器捕集率很高、结构简单,因此选用丝网除沫器。当化工耙式烘干机处于稳定的运行过程中,系统内包含有两种热力平衡的过程。根据耙式干燥器特点,自行进行设计了一个环状的丝网。按上面计算值每小时蒸汽量为33.33kg/h,增加一定余量故此处按 40 kg/h 气液混合物(其中有0.4kg/h 的液体)进行设计。因为处理的蒸汽中液量很少,故采用低液量方法计算
版权所有©2024 产品网