换热器是油田化工和其他许多工业部门广泛应用的一种通用工艺设备,其中管壳式换热器在石油化工行业中应用尤为广泛。而管壳式换热器成本较高,其热工性能决定着后期运行成本。为此,国内外众多学者对其流动传热进行了大量的研究。其中,计算传热学模型中的瑞流扩散系数是利用温度方差和温度方差耗散率来求解,而不是利用通常采用的数假设值或实验测定值来求解。大庆油田拥有大量的管壳式换热器,其性能直接影响的处理过程和油田节能减排的落实程度,而随着含水率增加,换热器结据率明显,易造成其壁面的结塘甚至堵塞,并且由于污拒会对换热器材料腐蚀,容易导致壁面穿孔造成物料泄漏和损失,甚至产生隐患。为消除换热器结据和泄漏造成的损失,油田管理部门每年都对换热器进行清洗、堵漏作业,但目前尚无有效手段快速地评价换热器的结塘和泄漏情况,导致需要针对每一台换热器进行处理,造成管理成本的增加。而管壳式换热器的流动传热特性是评价其结塘、池漏的关键,也是进行有效预测的前提条件。
换热器内砂沉积对结垢位置的影响
换热器内管壁结垢主要受其液体介质含砂浓度的影响,对管壳式换热器壳程流场进行了液一固两相流数值模拟,根据模拟结果分析,确定换热器的主要砂沉积位置。壳程为沙子和的两相流动,沙子的粒径根据现场采集的数据大约在0.2mm-O.}mm之间。本次研究选用沙子粒径为0.2mm和0.4tn m,沙子的体积分数选为10%,壳程进口流速为0.7m/s,对管壳式换热器的壳程流场进行数值模拟。油田原稳站油一油管壳式换热器内部结构复杂,结构尺寸大,采用数值模拟研究时,对计算机配置要求较高,采用CFD前处理软件很难对现场实际模型进行网格划分,为便于研究分析,本课题在研究的过程中,对现场实际换热器进行模型简化处理。砂子体积分布的位置选取结果为沿换热器管长方向的四个截面,其中,z=-0.7n:为管壳式换热器壳程出I:l处的一个截而,z二一0.39m与z=0.016m为靠近管壳式换热器折流板的一个截面,z=0.7m为管壳式换热器壳程入I-I处的一个截面。
随着结塘厚度的增加,换热器管程出口温度升高,壳程出口温度降低。由于换热面污据的存在,增大了换热面的导热热阻,减小了其导热系数,使管壳程的传热系数降低,从而影响了换热器的换热性能。***终导致换热管程出口温度升高,壳程出口温度降低。采用换热器的传热系数作为换热器换热效果的评价标准,以此来对比各组结坂工况的换热器传热性能。并且,污垢中腐蚀性介质腐蚀金属管壁,导致其穿孔,即形成管壳式换热器泄漏、致使物料污染。随着污振厚度的增加,换热器的传热系数降低,这是由于污塘的存在,导致了换热面的导热热阻增加,导热系数减小,导致的换热器传热系数降低,换热效率减小。这说明:随着换热面结塘厚度旳增加,换热器的传热性能降低。且随着结拒厚度的增加,换热器传热性能的这种降低趋势越发平缓。
版权所有©2025 产品网