反应设备使用历史悠久, 应用广泛, 由于在反应釜电加热使用过程中涉及反应, 所以对反应设备本身安全要求较高。我国《压力容器安全技术监察规程》从管理及安全的角度出发对压力容器进行分类时, 把反应容器提高了一个等级, 把中压、介质为或毒性程度为危害介质、PV≥10 MPa· m3 的反应容器划分为三类压力容器, 而且把低压、介质毒性为极度和高度危害、PV≥0.2 MPa· m3 的容器也划分为三类容器。三类容器在设计、制造、检验和使用管理方面提出严格要求, 以防止意外事故的发生。文中所介绍的反应釜属于三类容器, 其反应介质之一为, 工作压力为0.7 MPa, 工作温度接近180 ℃。无色***, 极其(在空气中含3% ~ 100%均可), 属高度危害介质。:从安全的角度出发,给出反应釜顶盖与筒体焊接,在一侧开人孔的结构。如何保证安全, 防止泄漏, 是设备设计时需***解决的问题。而密封难点集中反映在顶盖与筒体相连接的部位, 主要是因为其密封面积大、密封不易保证造成的。
开孔边缘沿接管环向各向总应力及应力强度的变化情况可以看出:
1)内外壁相贯线应力强度沿横坐标的变化趋势基本相似, 且内部相贯线的应力强度值要比外部的大得多, 应力强度值大约在接管环向90°附近(该位置为封头没有开孔时环向应力为零的位置);
2)应力强度出现极值的位置与图5径向、经向与环向总应力出现极值的位置基本一致。在0°~ 45°范围, 随着环向应力的减小, 应力强度也在逐渐减小, 在0°附近环向应力达到负的值, 应力强度出现了一个极大值,而其余两个应力几乎保持不变或者发生缓慢的变化;在45°~ 90°范围内, 随着径向和经向应力快速增加, 并达到值, 应力强度在此范围内也快速增加, 在90°附近, 随着这两个应力达到值, 应力强度也出现了值, 此时环向应力几乎保持不变;在90°~ 125°范围, 径向与经向应力快速下降, 应力强度也随着快速减小且达到一个值, 在该范围环向应力同样几乎保持不变;在125°~ 180°范围内, 径向与经向应力基本保持不变, 而环向应力的快速增加, 在180°出现一个极大值, 而应力强度也继续增加, 在180°相应地出现了一个极大值。其试验温度许用应力[σ]=113MPa,设计温度许用应力[σ]t=110。
通常情况下, 可能有以下几种材料可选作釜体的材质:①304 不锈钢;②316 L 不锈钢;③钛等, 但通过对这些材料的盐酸腐蚀速率图及以上腐蚀原因分析可知, 普通的奥氏体不锈钢已不在可选的范围了, 而钛又是一种很贵重的金属, 且它与钢之间的焊接技术还不成熟。其实选择就是双相不锈钢2205, 主要有以下两个原因:一是双相不锈钢在抗晶间腐蚀和应力腐蚀方面, 特别是耐氯化物腐蚀的性能优于奥氏体不锈钢。试验表明, 在1 %的沸腾盐酸中, 304、316L、钛和2205 的腐蚀速率分别为:材料304, 316, TA, 2205, 腐蚀速率(mm/a)分别为304 ,0.3 , 0.2 , 0.1。可见2205 钢的耐盐酸腐蚀性能明显优于其它三种材质;二是它的价格也不太昂贵。同样,考虑顶盖密集开孔的削弱和搅拌器等附件重量的影响,顶盖厚度取16mm。基于304 不锈钢不能保证反应釜长期实际使用的事实, 而双相不锈钢又对含Cl-等介质具有良好的耐蚀性能, 故拟选择2205 双相不锈钢作为反应釜釜体的主要材质。
双相不锈钢与奥氏体不锈钢的区别 奥氏体不锈钢的焊接问题常常与焊缝金属本身有关, 尤其是在全奥氏体或奥氏体占优势的焊缝凝固过程中产生的热裂倾向。由于双相不锈钢具有非常好的抗热裂性, 焊接时很少考虑热裂。双相不锈钢焊接的问题是与热影响区而不是与焊缝金属有关。热影响区的问题是耐蚀性、韧性降低或焊后开裂。目前,双相不锈钢的焊接方法主要有:①气体保护钨极电弧焊(GTAW),有时也叫做惰性气体保护钨极(TIG)焊。为了避免发生上述问题, 焊接工艺的***是使在“ 红热”温度范围内的总停留时间, 而不是控制某一条焊道的热输入。
版权所有©2025 产品网