二十世纪末期,MVR 技术得到了快速发展。美国通用电气公司(GeneralElectric Company,简称 GE)在 1999年开始进行研发 MVR 技术在重油开采过程中废水蒸发回收的应用。当8000l耙式烘干机处于稳定的运行过程中,系统内包含有两种热力平衡的过程。现在该公司开发出的 MVR 系统已经成熟应用于重油开采废水回收中,据资料显示,该系统每蒸发 1 吨水仅需消耗15~16.3 k W·h 电量,其能耗只约占了加热蒸汽驱动的单级蒸发系统的 4%,节能效果显著。本世纪初期,能源成本急剧上升,在此背景下世界巨头们纷纷开始进行节能技术研究,美国斯旺森公(Swenson)成功开发出MVR 系统。该公司所开发的 MVR 系统,处理 1 吨的相关生产物料所消耗的能量仅需 31.8 k W·h,而若采用传统方法为达到相同的生产要求则需要消耗 644 k W·h 的能量,由于8000l耙式烘干机节能显著使得该系统在制碱工业中获得了成功的应用。
耙式干燥系统中主要由耙式干燥机、压缩机、检测控制装置、蒸汽管道等组成,其可在常压及负压下对液态或固态物料进行干燥,热源为经压缩后升温增压的二次蒸汽和补充的少量生蒸汽。按干燥物料特性及干燥要求的不同,可选择的干燥封系统有填料密封及机械密封。该8000l耙式烘干机工艺中二次蒸汽直接在干燥机加热夹套及中空热轴内冷凝,不需要额外配备冷凝设备即可对排出干燥机的二次蒸汽进行冷凝回收处理。物料通过进料口进入到干燥机内,干燥过程中中空热轴在电机驱动下对物料进行搅拌,并随着干燥的进行将物料往干燥机出料口一侧推动,干燥结束后从出料口取出干物料。
8000l耙式烘干机系统对于实验室研究而言较简便且测试数据也相对不精准,为满足实验研究,确保实验的准确性,因此设计了一套用于实验室中试研究使用的 MVR 耙式干燥实验系统,该系统主要设备有蒸汽发生器、流量计、减压阀、耙式干燥器、丝网除沫器、罗茨压缩机、蒸汽减温器、疏水阀、换热器、热水表、辅助设备及管路组成。而中东的一些***也一直致力于将8000l耙式烘干机MVR技术应用于海水淡化等领域的研究并取得了一定的成果。
8000l耙式烘干机的蒸汽发生器产生的生蒸汽计量后通过减压阀加入耙式干燥机中充当热源,物料受热湿份蒸发产生二次蒸汽,二次蒸汽经过丝网除沫器去除粉尘和液滴,进入罗茨压缩机增压升温后,蒸汽减温器喷水去除过热使压缩后的二次蒸汽饱和,并加入部分生蒸汽后作为热源重复利用,蒸汽在干燥机夹套和中空轴内释放潜热冷凝,经过疏水阀排出,换热器可以对疏水阀泄漏的部分蒸汽进一步冷凝确保实验准确,热水表对冷凝水计量。8000l耙式烘干机使用机械蒸汽再压缩技术的干燥系统会因为压缩机和需增加干燥器换热面积等原因使得成本增加。
8000l耙式烘干机换热器是化工生产中重要的化工设备之一,换热器的种类、型号很多,特点不一,需要根据实际生产工艺要求选择合适的换热器。管壳式换热器是目前工业生产中应用广泛的换热设备,其单位体积的传热面积比较大且传热效果好,此外,结构简单,制造材料范围广,操作弹性大。8000l耙式烘干机多效蒸发-机械蒸汽压缩系统设计(MEE–MVC)脱盐工艺。因此本系统中选择使用管壳式换热器。换热器选择的流速应尽可能避免流体处于层流状态,不同流体流经换热器时换热器传热系数也不同,8000l耙式烘干机的管壳式换热器不同流体总传热系数 KH的经验值。换热器实际传热面积需预留 20%余量,假设换热器中冷水 25℃进入换热后 50℃流出,根据前文计算蒸汽流量 33.3kg/h,假设有 10%蒸汽从疏水阀泄漏出来,则有 3.3kg/h 蒸汽需要利用换热器的冷量冷凝,其余热水假设全部由饱和时的 113.2℃冷凝成 45℃热水,提供冷量的冷水则从 25℃升温到 40℃。
版权所有©2025 产品网