耙式真空烘干器用蒸汽等为热源间接加热物料并在真空条件下脱湿,尾气经过滤、冷凝除湿后由真空泵排出。换热器选择的流速应尽可能避免流体处于层流状态,不同流体流经换热器时换热器传热系数也不同,耙式真空烘干器的管壳式换热器不同流体总传热系数KH的经验值。本文将 MVR技术应用于耙式干燥系统,提出用罗茨蒸汽压缩机替换该系统中的真空泵,将干燥过程脱出的湿分(二次蒸汽)压缩以提高压力和温度,再经增湿(消除过热)和补充少量生蒸汽后作为热源使用。不仅节省了大量热能,还节省了冷量,节能效果显著。该系统特别适合热敏性、易氧化和湿分须回收的物料的干燥。
被干燥物料可以是粉粒状、膏状、浆状,也可以是溶液(此时包含蒸发、结晶和干燥过程)。当耙式真空烘干器处于稳定的运行过程中,系统内包含有两种热力平衡的过程。本文提出了 MVR 耙式干燥系统工艺流程;设计了实验装置的工艺流程,进行了物料热量衡算和主要设备工艺计算,绘制了带控制点工艺流程图、耙式真空烘干器和丝网除沫器装配图和设备管道布置图,搭建了MVR 耙式干燥实验装置。
耙式真空烘干器机械蒸汽再压缩技术(MechanicalVapor Recompression Technology,简称MVR 技术),是一种对蒸发器或干燥器中产生的二次蒸汽使用机械压缩的方法进行压缩,使其温度和压力都升高,从而提高二次蒸汽的品位,再将压缩后的二次蒸汽输送回蒸发器或干燥器中循环使用,来回收二次蒸汽中的热量,减少使用生蒸汽或外加热量,可以有效节约能量的消耗。离心式压缩机对压缩气体的温度、流量、压力等的变化都较为敏感,比较容易出现喘振现象。
MVR 系统的流程主要是湿物料加入至耙式真空烘干器蒸发器或干燥器中被加热到相应压力下泡点温度后,物料中的部分水分发生相变气化成二次蒸汽,而水分蒸发掉后的干物料则从蒸发器或干燥器中排出,设备中产生的二次蒸汽被压缩机压缩后升温增压,再返回到蒸发器或干燥器中,发生相变冷凝释放潜热与湿物料进行热交换,而二次蒸汽则冷凝成冷凝水从蒸发器或干燥器中被排出,排出的冷凝水可以作进一步回收处理。MVR技术在固体干燥领域的应用,其中难点在于加热蒸汽与干燥物料之间的传热,且热传导作为耙式真空烘干器MVR系统的主要传热方式,其中一个问题是接触热阻的存在会严重影响传热,使得传热效果会大大减小,然而如何减小热阻,强化传热至今仍是一个难题。MVR 技术回收系统中生成的全部二次蒸汽重复利用,节能效果十分显著。
被耙式真空烘干器干燥物料可以是粉粒状、膏状、浆状,也可以是溶液(此时包含蒸发、结晶和干燥过程)。分离器下面本应设集液板,但考虑本系统中为方便液体从丝网上直接滴入干燥室内,故不设集液板。为了测试该工艺系统的性能,设计了一套用于实验目的的 MVR 耙式干燥实验系统,对 MVR 耙式干燥系统需要的主要设备进行选型计算,根据实验工艺流程,搭建基于耙式干燥机的MVR耙式干燥实验系统装置,在此装置上进行系统相关性能测试。此系统可以进行浓缩、蒸发、干燥等多项操作,故以水、碳酸钠溶液作为干燥物料进行实验分析测试。
耙式真空烘干器压缩机出口选用φ65 4 钢管。加热或冷却的蒸汽进出中空的转轴必须使用旋转接头,根据管径选取 Dd-F65 旋转接头。使用理论分析和实验相结合的研究方法,探究了该系统在不同的蒸发压力及压缩比下合适的操作域,继而研究了二次蒸汽量、补充水量与压缩比及蒸发压力之间的关系。出口处两股蒸汽分别通往加热夹套和中空热轴,因此出口管路上需使用三通管和异径接管。 通过厂家给出的耙式干燥机数据可知中空热轴的传热面积大于加热夹套的传热面积,且轴套的传热面积约为夹套的两倍,计算时蒸汽流量按轴套为夹套的两倍。连接蒸汽发生器管路管径根据相关资料可知1MPa 以下蒸汽平均流速取18m/s,因此耙式真空烘干器选用φ32 3.5 钢管。管路组成上不同管径使用异径接管连接,需要支路的接口处使用三通接口连接,改变方向时使用直角弯头连接。此外管路上还安装有各种测量装置等。
版权所有©2025 产品网