耙式干燥机厂家多效蒸发-机械蒸汽压缩系统设计(MEE–MVC)脱盐工艺。换热器实际传热面积需预留20%余量,假设换热器中冷水25℃进入换热后50℃流出,根据前文计算蒸汽流量33。分析了工艺装置?效率并建立其热经济学的数学模型。使用(VDS)软件对不同的操作条件下MEE-MVC 系统进行能量分析。结果表明,MEE-MVC 系统相比传统的蒸发系统能源效率提高8%,且单位产品成本低29%。对于 MEE-MVC 系统,通过将蒸汽压缩机的压缩比从 1.35 降低到 1.15,压缩机的***成本可以降低 16%,功耗比降低 50%。当压缩比为 1.15 时,盐水再循环流速的分流比从 0.5 减小到 0.25,单位产品成本可以从 1.7$/m3 降低到1.21$/m3。即使考虑到 MEE-MVC 脱盐设备***成本,该系统单位产品成本仍然为。
MVR技术在固体干燥领域的应用,其中难点在于加热蒸汽与干燥物料之间的传热,且热传导作为耙式干燥机厂家MVR系统的主要传热方式,其中一个问题是接触热阻的存在会严重影响传热,使得传热效果会大大减小,然而如何减小热阻,强化传热至今仍是一个难题。76kg/(kW·h),换算为废液处理量达到166kg/h,且仅消耗8kW·h电功。鉴于国内外成功工业化应用的MVR耙式干燥机厂家系统,以及近些年国内外学者在 MVR 技术在蒸发浓缩领域应用研究所取得的一系列成果,可以发现目前MVR 技术的研究及其工业应用主要都是集中在处理溶液等领域,而这些单元操作的主要特点就是沸点升高较低,就工业应用而言主要集中在制盐、海水淡化等领域。
传统的耙式干燥系统用蒸汽等为热源间接加热物料并在真空条件下脱湿,尾气经过滤、冷凝除湿后由真空泵排出。按干燥物料特性及干燥要求的不同,可选择的干燥封系统有填料密封及机械密封。本文将机械蒸汽再压缩技术应用于干燥领域,提出了 MVR 耙式干燥系统工艺流程,并设计出一套可工业应用的工艺系统。MVR耙式干燥系统用罗茨蒸汽压缩机替换耙式干燥系统中的真空泵,将干燥过程脱出的湿分(二次蒸汽)压缩以提高压力和温度,再经增湿(消除过热)和补充少量生蒸汽后作为热源使用。
不仅节省了耙式干燥机厂家大量热能,还节省了冷量,节能效果显著。基于空心桨叶干燥机建立了一套机械蒸汽再压缩式热泵干燥系统,采用罗茨压缩机驱动,对污泥间歇干燥过程的恒速段进行实验研究,实验结果表明在恒速段,降低干燥压力、适当减小压缩比、选择合适的转轴频率均有利用提高系统的运行效率。该系统特别适合热敏性、易氧化和湿分须回收的物料的干燥。在这些领域之所以能得到广泛的研究则是由MVR 技术的特性而决定的,与该领域不同的高浓度液体、固体干燥等方向的 MVR技术工业应用的研究几乎还没有,目前更多的是在理论上对该技术与其他干燥技术联用时的特性进行分析,对于 MVR 在固体干燥方面还有待于深入研究。
耙式干燥机厂家换热器是化工生产中重要的化工设备之一,换热器的种类、型号很多,特点不一,需要根据实际生产工艺要求选择合适的换热器。美国通用电气公司(GeneralElectricCompany,简称GE)在1999年开始进行研发MVR技术在重油开采过程中废水蒸发回收的应用。管壳式换热器是目前工业生产中应用广泛的换热设备,其单位体积的传热面积比较大且传热效果好,此外,结构简单,制造材料范围广,操作弹性大。因此本系统中选择使用管壳式换热器。换热器选择的流速应尽可能避免流体处于层流状态,不同流体流经换热器时换热器传热系数也不同,耙式干燥机厂家的管壳式换热器不同流体总传热系数 KH的经验值。换热器实际传热面积需预留 20%余量,假设换热器中冷水 25℃进入换热后 50℃流出,根据前文计算蒸汽流量 33.3kg/h,假设有 10%蒸汽从疏水阀泄漏出来,则有 3.3kg/h 蒸汽需要利用换热器的冷量冷凝,其余热水假设全部由饱和时的 113.2℃冷凝成 45℃热水,提供冷量的冷水则从 25℃升温到 40℃。
版权所有©2025 产品网