各种保护及安全信号装置反应釜的设计充分考虑了设备运行的安全性, 所有与设备安全有关、需要保护的部位均设置了信号指示和保护措施。各信号指示均安装于釜体上盖, 便于操作人员的观察监测。反应设备使用历史悠久,应用广泛,由于在反应釜价格使用过程中涉及反应,所以对反应设备本身安全要求较高。A27H-10 弹簧微启式安全阀, 保证釜体反应层工作压力不超过设定值。801 立式自动排气阀, 用于观测釜内物料反应程度。Y-150 压力表, 用于观测釜内物料反应压力。WZP-230 温度传感器,用于监控釜内物料反应温度;温度表, 用于直接观测釜内物料反应温度。 釜体反应层壁厚的设计釜体材料1Cr18Ni9Ti , 釜体材料许用应力为[ σ] t =137MPa , 筒体与封头焊接形式采用双面焊接、全焊透, 焊接接头系数为=0.85 , 腐蚀裕量C2=1.5mm , 采用局部无损检测, 钢板厚度负偏差为C1 =0.5mm , 釜体反应层内直径为Di =1100mm ,设计压力为pc =0.5MPa , 则釜体反应层计算壁厚。
本文针对化工反应釜作业中压力异常升高引起的事故原因,从事故树安全分析理论出发,对其结构的优化改进及有关内容进行研究,以确保其进行化工生产作业的安全性。根据现场场地布置,并结合参考了化工设备标准反应釜尺寸,选取其内径Di1=Φ1800mm,按充装系数0。反应釜在化工、制药等多行业领域中都有较为普遍的应用,由于其作业中存在较为复杂的固液多相混合情况,容易生成较多的热传递效应,一旦混合效果不理想就会导致多种问题发生,造成各种不安全事故。因此,针对反应釜结构设计现状,进行优化与改进研究,具有十分突出的必要性。下文将以化工反应釜为例,根据其作业中压力异常升高导致发生的原因,从事故树安全分析理论出发,对其反应釜结构的优化改进进行研究,以确保其进行化工生产应用的安全性。
反应釜温度控制技术分析化工生产中使用的反应釜为主要反应容器,利用导热介质,借助夹套实现物料加热。一般来说,常用过热蒸汽以及导热油等导热介质。筒体一处有一直径为300mm的鼓疱,可见此釜已严重腐蚀,尤其上封头腐蚀严重,已直接影响投料生产。从反应的过程角度来说,主要包括升温段、恒温段以及冷却段。其中,恒温段为关键。化工生产为复杂精细化加工,在加工环节加热温度的控制难度较大。这是因为温度这一物理量极易被周围的环境影响,不仅惯性而且具有滞后性等特点,系统响应速度比较慢。传统的温度控制,采用的是传统PID 算法,难以达到有效的控制效果,后经过不断优化和改进,应用自适应模糊PID 控制技术,使用自适应模糊PID 控制器,经过模糊推理,通过在线调整PID 参数,实现对温度的有效控制。从实际应用的效果来说,使用自适应模糊PID 控制器,对反应釜温度实施控制,可依据系统偏差以及偏差变化率的实际变化情况,进行参数优化调整,不仅适应性好,而且鲁棒性较好,能够实现对反应釜温度的把控。
从化工生产的实际来说,反应难以避免会放热,使得热量分布不够均匀。按外压容器设计出筒体的名义厚度为14mm,为取材一致和开孔补强,故将顶盖厚度取与筒体相同。若没有及时排出热量,那么会使得反应釜内的温度增加,极易引发“爆聚”问题。若余热排放过多,会使得整体稳定性被降低,影响化工产品的质量和效益,因此必须做好温度的有效控制.从化工生产的实际来说,反应釜的温度控制多采用常规PID 控制方法。此方法虽然控制原理比较简单,具有不错的稳定性,而且控制系统的可靠性比较好,参数调整很方便。
反应釜的炉温控制实践,运用常规PID 控制法,可有效控制动态特性,比如温度惯性大以及容量滞后等。若化工生产对控制速度以及控制精度的要求不高,那么运用常规PID 控制法可获得不错的效果。因为反应釜内反应环节会进行吸热和放热,具有时变性和非线性等特点,增加了温度控制的难度。不过常规PID 控制器的功能实现依赖于相应的数学模型,反应釜实际应用中,反应机理比较复杂,参数具有变化性特点,同时极易受到外界的干扰,影响数学模型的性,增加了参数调整的难度。基于此,要进行PID控制器的优化,应用模糊RBF ***网络PID 控制法,对反应釜PID 控制进行优化以及改进。从模糊RBF ***网络PID 控制法的应用实际来说,其构建的PID 控制系统在实际运行中实现稳定运行,需要的时间很少而且超调量很小,增强了炉温的控制精度,提高了生产效率。除此之外,系统的抗干扰性能很强,系统的自适应能力比较强,具有较好的鲁棒性。通过在线整定PID 参数,能够快速适应控制系统的变化,使得系统运行保持稳定的状态.
版权所有©2025 产品网