换热器是油田化工和其他许多工业部门广泛应用的一种通用工艺设备,其中管壳式换热器在石油化工行业中应用尤为广泛。而管壳式换热器成本较高,其热工性能决定着后期运行成本。为此,国内外众多学者对其流动传热进行了大量的研究。大庆油田拥有大量的管壳式换热器,其性能直接影响的处理过程和油田节能减排的落实程度,而随着含水率增加,换热器结据率明显,易造成其壁面的结塘甚至堵塞,并且由于污拒会对换热器材料腐蚀,容易导致壁面穿孔造成物料泄漏和损失,甚至产生隐患。为消除换热器结据和泄漏造成的损失,油田管理部门每年都对换热器进行清洗、堵漏作业,但目前尚无有效手段快速地评价换热器的结塘和泄漏情况,导致需要针对每一台换热器进行处理,造成管理成本的增加。(2)通过分析泄漏情况下换热器温度参数的变化情况,提出了通过分析换热器管程和壳程进出口温度变化来判断换热器是否泄漏的方法。而管壳式换热器的流动传热特性是评价其结塘、池漏的关键,也是进行有效预测的前提条件。
换热器管道的缺陷发生在支撑板附近,已成为铁磁性换热管***监测区域。对换热管道不同缺陷产生的漏磁信号进行了二维模拟,考虑了静态时的支撑板处缺陷深度、缺陷宽度、换热器管道壁厚、检测仪器低速运动,以及缺陷相对于支撑板处在不同的位置对检测仪器输出信号的影响,给出了漏磁场磁感强度随以上参数变化的曲线。对同轴径向热管换热器壳程进行模拟计算,分析烟,速度、温度及局部对流换热系数沿壳程的变化规律,并寻求换热器结构参数优化值。1m/s这是由T一折流板的阻挡作川,降低一r砂的速度当砂粒径较大,质较大时,砂容易在速度降低区域形成砂分沉积。
得到径向热管换热器结构优化参数:横向管距为纵向管距为翅片高度不应高于,翅片间距为。对单弓形折流板式换热器的结构进行合理简化,利用参数化建模方法建立了管壳式换热器的参数化模型,将定壁温假设方法与同时考虑壳程和管程流体的两流程祸合计算方法的模拟结果进行对比,结果表明:同时考虑壳侧和管侧流体流动与传热,更有助于揭示换热器局部温度场变化的实际情况,模拟结果与实际情况吻合较好,能够为管壳式换热器结构优化设计提供更好的参考依据。换热器由于处于受压力、介质腐烛性、流动磨烛,尤其是固定管板换热器,还有温差应力,管板与换热管连接处极易泄漏,导致换热器内漏。
用TS模型和多模型组合预测冷凝器污垢。以实验装置中的3处壁温、污管的出入口温度、污管中流体的流速和污管热阻为输入,建立基于径向基***网络的污垢预测模型,对筛选出的160组数据进行预测,与BP网络相比,该网络预测污垢热阻的收敛速度和精度都优于BP网络。早在上世纪六十年代就有学者首先提出污垢热阻随时间的变化是沉积率与剥蚀率之差这一结垢模型,将污垢热阻随时间的变化关系归纳为线性污垢模型、幂律污垢模型、降律污垢模型、渐近污垢增长模型,而且己有基于上述方法制成的仪器仪表,对污垢清洗具有重要的指导作用。但是,管壳式换热器结垢对其内部流动换热性能影响的研究相对较少。(3)研究泄漏口位置沿换热器管长方向变化对管壳式换热器流动传热性能的影响规律。
管壳式换热器运行过程中的速度矢量分布,在换热器运行过程中,换热器壳程入口段的速度矢量值在0.5m/s;顺着折流板走向,换热器壳程内砂的速度矢量值相比较大,在I m/s至1.4m/s之问变化,在折流板!对于管壳式换热器,换热管直径相对很小,数量众多,容易发生堵塞和结垢,而且对换热管的清洗和更换十分困难,管壳式换热器管程内部的流通介质为比较清洁的流体。几方的砂速度;在折流板逆向换热器壳程内介质流动方向的背部,固体砂的速度矢晕值,人约为0.1m/s这是由T一折流板的阻挡作川,降低一r砂的速度当砂粒径较大,质较大时,砂容易在速度降低区域形成砂分沉积。砂粒径0.2mm时,管壳式换热器模拟运行达到稳定的情沉下,换热器壳程内沿换热器管民方向各个截而的砂体积分情况。山于此时管壳式换热器壳程内部流通介质含的砂粒径非常小,为0.2mm的流动能很好的带动砂流动,导致换热器整个砂的体积分布较均匀,整个壳程的含砂量都较小,接近入2类石油。
版权所有©2025 产品网