8000l耙式干燥器用蒸汽等为热源间接加热物料并在真空条件下脱湿,尾气经过滤、冷凝除湿后由真空泵排出。本文将 MVR技术应用于耙式干燥系统,提出用罗茨蒸汽压缩机替换该系统中的真空泵,将干燥过程脱出的湿分(二次蒸汽)压缩以提高压力和温度,再经增湿(消除过热)和补充少量生蒸汽后作为热源使用。不仅节省了大量热能,还节省了冷量,节能效果显著。该系统特别适合热敏性、易氧化和湿分须回收的物料的干燥。简化后的单级8000l耙式干燥器MVR脱盐系统模型(此系统只包含一根9m长度,0。
被干燥物料可以是粉粒状、膏状、浆状,也可以是溶液(此时包含蒸发、结晶和干燥过程)。本文提出了 MVR 耙式干燥系统工艺流程;因而,可以推断,存在一个温差的值,使整个系统具有的能耗和的传热面积。设计了实验装置的工艺流程,进行了物料热量衡算和主要设备工艺计算,绘制了带控制点工艺流程图、8000l耙式干燥器和丝网除沫器装配图和设备管道布置图,搭建了MVR 耙式干燥实验装置。
在8000l耙式干燥器MVR基础上基于流化床干燥设计研发出“自回热干燥技术”,不仅能充分利用蒸汽蒸发所带的潜热,更能利用物料出料时所带的显热,与传统干燥系统相比,该系统能使节能效果达75%以上。低级煤干燥技术的现状以及探讨了其今后发展。因为煤的出售价格主要取决于煤的热值,因此除去低级煤中的部分水分(LRC)是提高煤热值的一个重要操作。此外,去除水分干燥后的煤可以有效的降低其在热解、气化和液化等过程中的操作成本。后改用Zma空心轴耙式干燥机后,干燥时间缩短为原来的一半,含水量稳定在千分之三以下。
当8000l耙式干燥器处于稳定的运行过程中,系统内包含有两种热力平衡的过程。其中一个过程是干燥器湿份蒸发、冷凝过程中的相变热,通过压缩机输入到系统中的压缩功以及系统热损失向外传递能量的总体能量平衡过程;设计了实验装置的工艺流程,进行了物料热量衡算和主要设备工艺计算,绘制了带控制点工艺流程图、8000l耙式干燥器和丝网除沫器装配图和设备管道布置图,搭建了MVR耙式干燥实验装置。另一过程是MVR系统中干燥器内加入、排出物料的质量平衡。干燥器内的热力过程分别发生在蒸发侧和冷凝侧,蒸发侧的干燥物料湿份受热蒸发后产生二次蒸汽和干燥后的物料,冷凝侧压缩后的二次蒸汽冷凝为水。
由于耙式干燥机为传导传热型干燥机,其加热夹套和中空热轴共同提供传热面,加热 夹套外层装有保温材料故热损失不大,中空热轴与外界隔离,而中空热轴提供的传热面在整台干燥设备的传热面积中所占比例较大,因此耙式干燥机干燥过程中设备壁面的散热量少,这里取热损失量为总量的5%。在干燥器内的空气温度变化不大,因此造成的热损失可以忽略不计。在干燥过程中因设备壁面的散热等因素造成的热损失按总量的10%计算。按照常规设备设计惯例,考虑到热损失等情况,一般在设计计算值上再增加20%换热面积余量,根据计算出的干燥机大概换热面积的尺寸,选型在售8000l耙式干燥器规格加热面积为7.6m2 的耙式干燥机,并将需求告知相关设备生产厂家对设备进行加工制作。根据8000l耙式干燥器MVR技术的特点,将该技术与不同的工艺结合起来形成新的处理流程,该流程可以根据实际生产需要提供相宜的传热温差。
版权所有©2025 产品网