从项目经验来看,针对不同的检测样品,通常需要采用不同的打光方式才能得到理想的图像,能凸显目标物特征。但也有某些样品使用多种不同类型的光源都可以适用,能得到理想的图像特征。如小范围的字符识别,可能是条形光源、无影光源、环形光源、同轴光源等都可以适用。自由曲面光学系统的优势:自由曲面光学系统的设计自由度较大,可以采取折射和反射相结合的方法,可避免中心遮拦的离轴式设计,有利于获得高分辨力、高光通量利用率,并通过光路折叠,实现系统结构的紧凑化。而有些样品,则可能只能有一种光源能适用,甚至有时需要采用组合光源的方式才能得到理想的特征。因此除了必须的理论知识外,平时的经验积累也是相当重要的。
机器视觉系统的核心部分是图像采集和图像处理,图像本身的质量对整个视觉系统的影响极为关键。而照明光源则是决定整个机器视觉系统图像质量的因素,通过选择合适的光源,可以使图像中的目标特征与背景信息得到分离,从而大大降低图像处理的难度,提高系统的稳定性和可靠性。轴外点离光轴越远,拦截现象(即渐晕)越严重,结果是视场外围的像面照度大大降低。
光学系统的革命性颠覆
传统相机、摄像机都是通过光学镜头将物体发出的光线聚焦到胶片或传感器上而形成图像,这就注定手机无法做得很薄,相机不能降低厚度,哈勃望远镜都发射到太空了,才发现巨大的镜片加工出了问题,不得不重新磨制了一个,还得靠宇航员长时间***的太空行走进行修复。这一切在不久的将来可能都会改变,加州理工学院的科学家们正在研发一种革命性的无镜头相机,用超薄的光学相控阵列(OPA)芯片来代替镜头和传感器,通过在芯片上操纵入射光线来捕获图像,相当于跳过镜头在传感器上直接成像。3、无限远双重色差校正光学系统:是目前的光路设计,不但能矫正位置色差,同时还能矫正倍率色差,提供反差、衬度、分辨率的锐利图象。
当时解决办法就是尽量减小物镜表面的曲率,
这样能有效减小色差,这样做的缺点也是显而易见的,由于物镜曲率减小,其焦距和镜筒的尺寸必须拉得很长,大口径光电装备决定了人类空间观测能力的极限,可展开光学成像技术、薄膜反射镜成像技术、衍射望远镜成像技术等新技术的研究则提升了光学系统的空间分辨率,促进大口径、大视场光学系统不断突破。目前经过我国多个光学科研单位多年的攻关,已经成功攻克了相关核心技术,实现了光学前沿技术的跨越。当时的解决办法就是尽量减小物镜表面的曲率,这样能有效减小色差,这样做的缺点也是显而易见的,由于物镜曲率减小,其焦距和镜筒的尺寸必须拉得很长,这就导致在17世纪到18世纪上半叶流行的都是这样用起来极不方便的长镜身望远镜。
在基本物理量中,并不是放大率,目视望远镜要的参数是物镜口径的大小,物镜口径越大,它收集天体的光就越多,从而能看到更多暗淡的恒星,其次物镜口径越大,它的分辨角就越小,分辨近距双星的本领就越强,也就能看清有视面天体如月球,行星,星团等的细节。具相关资料显示,中小型目视望远镜有效的放大率往往为物镜毫米数的3倍左右,再此值以上即使再加大放大率也是毫无收益的。但也有某些样品使用多种不同类型的光源都可以适用,能得到理想的图像特征。
版权所有©2025 产品网