1、 需求分析。分析用户或市场的需求,并将其翻译成对芯片产品的技术需求。
2、 算法设计。设计和优化芯片中所使用的算法。这一阶段一般使用语言(如C﹨C ),利用算法级建模和工具(如Matlab,SPW)进行浮点和定点的,进而对算法进行评估和优化。
3、 架构设计。根据设计的功能需求和算法分析的结果,设计芯片的架构,并对不同的方案进行比较。选择性能价格方案。这一阶段可以使用SystemC语言对芯片价格进行建模和分析。
4、 RTL设计。使用HDL语言完成对设计实体的RTL级描述。这一阶段使用VHDL或Verilog HDL语言的输入工具编写代码。
1、 需求分析。分析用户或市场的需求,并将其翻译成对芯片产品的技术需求。
2、 算法设计。设计和优化
杂质半导体 在本征半导体中,***信号转换数字芯片,如果掺入微量的杂质(某些特殊元素),将使掺杂后的半导体(杂质半导体)的导电能力显著改变。根据掺入杂质性质的不同,杂质半导体分为电子型半导体(N型)和空穴型半导体(P型)两大类。
1.N型半导体
若在纯净的硅晶体中掺入微量的五价元素(如磷),这样,硅原子占有的某些位置会被掺入的微量元素(如磷)原子所取代。而整个晶体结构基本不变。磷原子与硅原子组成共价键结构只需四个价电子,而磷原子的外层有五个价电子,多余的那个价电子不受共价键束缚,只需获得很少的能量就能成为自由电子。由此可见,掺入一个五价元素的原子,就能提供一个自由电子。必须注意的是,产生自由电子的同时并没有产生空穴,但由于热运动原有的晶体仍会产生少量的电子空穴对。所以,只要在本征半导体中掺入微量的五价元素,就可以得到大量的自由电子,且自由电子数目远比掺杂前的电子空穴对数目要多得多。
这种以自由电子导电为主要导电方式的杂质半导体称为电子型半导体,简称N型半导体。N型半导体中存在着大量的自由电子,这就提高了电子与空穴的复合机会,芯片数字测试,相同温度下空穴的数目比掺杂前要少。所以,在N型半导体中,电子是多数载流子(简称多子),空穴是少数载流子(简称少子)。N型半导体主要靠自由电子导电,掺入的杂质浓度越高,自由电子数目越大,导电能力也就越强。
在N型半导体中,一个杂质原子提供一个自由电子,当杂质原子失去一个电子后,就变为固定在晶格中不能移动的正离子,数字芯片测试仪,但它不是载流子。因此,N型半导体就可用正离子和与之数量相等的自由电子去表示。
模拟电路与数字电路的区别
1.电路的输入、输出信号的类型不同 数电:工作信号是数字信号“0”“1”,大朗镇数字芯片,且信号的幅度只有高低两种电平,数值上是离散的。 模拟:随时间缓慢变化的信号,数值上是连续的。
2.对电路的要求不同
数电:是实现输入输出的数字量之间实现一定的逻辑关系。
模电:要求电路实现模拟信号的放大、变换、产生。
3.电路中三极管的作用和工作区域不同 数电:三极管作为开关使用且工作在截至和饱和区。
模电:三极管作为放大元件,其工作在放大区。
4.所有的分析方法不同
数电:主要分析输入输出信号之间的逻辑关系,使用逻辑代数,真值表、卡诺图等分析方法。
模电:通常采用图解法和微变等效电路法。
现在的嵌入式系统,电子电路设计一般都是数字电路,只有数字信号,高低两种电平,只要分析输入输出信号的逻辑关系,不需要自己设计复杂的电子电路,简化了硬件设计的工作量、复杂度和调试周期。
版权所有©2025 产品网