磁电阻效应是对于一些磁性材料,当施加外磁场时,材料的电阻会发生变化的效应。这种磁电阻效应次由William Thomson 于1857 年在铁样品中发现。这一发现的材料磁阻变化率很小,只有1%,此效应即被称为各向异性磁电阻(AMR)效应。
1988 年,Grunberg 和Baibich 等人通过分子束外延的方法制备了Fe/Cr 多层膜,并在其中发现了磁阻变化率达到50%以上。这种巨大的磁电阻变化效应被称为巨磁电阻(GMR)效应。GMR效应来源于载流电子在不同的自旋状态下与磁场的作用不同导致的电阻变化。GMR由铁磁—非磁性金属—铁磁多层膜交叠组成。两层铁磁层的矫顽力不同。当铁磁层的磁矩互相平行时,载流子与自旋有关的散射,材料具有的电阻。而当铁磁层的磁矩为反平行时,载流子与自旋相关的散射强,材料的电阻。对于GMR效应可以由Mott 提出的双电流模型解释。在非磁性层中,不同自旋的电子能带相同,但是在铁磁金属中,不同自旋的能带发生劈裂,导致在费米能级处,自旋向上和向下的电子态密度不同。
在双电流模型中,假设自旋向上和向下的电子沿层面流动对应两个互相***的导电通道,其中自旋向上的电子,其平均自由程远大于自旋向下的电子。在铁磁层磁矩反平行排列下,自旋向上和自旋向下的电子散射概率相同;而在平行排列下,自旋向上的电子散射要远小于自旋向下的电子,从而造成平行和反平行排列下电阻的差别。
电容式接近传感器的工作原理:电容式接近传感器由高频振荡器和放大器等组成,由传感器的检测面与大地间构成一个电容器,参与振荡回路工作,起始处于振荡状态。当物体接近传感器检测面时,回路的电容量发生变化,使高频振荡器振荡。振荡与停振这二种状态转换为电信号经放大器转化成二进制的开关信号。
电感式接近传感器的工作原理:电感式接近传感器由高频振荡、检波、放大、触发及输出电路等组成。振荡器在传感器检测面产生一个交变电磁场,当金属物体接近传感器检测面时,金属中产生的涡流吸收了振荡器的能量,使振荡减弱以至停振。振荡器的振荡及停振这二种状态,光纤传感器能测出颜色吗,转换为电信号通过放大转换成二进制的开关信号,经功率放大后输出。
高频振荡型接近传感器的工作原理:由LC高频振荡器和放大处理器电路组成,当金属物体接近振荡感应头时会产生涡流,使接近传感器振荡能力衰减,内部电路的参数发生变化,由此识别出有无金属物体接近,进而控制开关的通或断。所有金属型传感器的工作原理:所有金属型传感器基本上属于高频振荡型。和普通型一样,它也有一个振荡电路,电路中因感应电流在目标物内流动引起的能量损失影响到振荡频率。目标物接近传感器时,不论目标物金属种类如何,颜色传感器rgb比例系数是多少,振荡频率都会提高。传感器检测到这个变化并输出检测信号。
有色金属型传感器的工作原理:有色金属传感器基本上属于高频振荡型。它有一个振荡电路,电路中因感应电流在目标物内流动引起的能量损失影响到振荡频率的变化。当铝或铜之类的有色金属目标物接近传感器时,振荡频率;当铁一类的黑色金属目标物接近传感器时,惠东颜色传感器,振荡频率降低。如果振荡频率高于参考频率,传感器输出信号。
1、CPU 主转速传感器
作用:用于向CPU反馈发动机转速信号。CPU接收到主转速传感器的反馈信号后,与程序内部设定的转速进行比对,以判断发动机的转速是否正常,发动机负荷状态是否正常,并结合其它反馈信号做出对发动机及液压系统的相关控制。异常情况下将控制液压系统减马力或控制发动机停机。
2、共轨压力传感器
作用:用于向ECU反馈共轨腔内高压柴油压力信号。由于共轨柴油控制系统采用的高压喷射,喷射压力较一般的直喷发动机高10倍以上。所以,ECU将实时监控共轨腔内的柴油压力,并根据反馈的压力信号和其它反馈信号进行判断,对喷射器电磁阀、EGR电磁阀、SCV阀等控制单元发出指令信号。
3、流量传感器
作用:汽车中的流量传感器大多测发动机空气流量和燃料流量,它能将流量转换成电信号。其中空气流量传感器应用更多,主要用于监测e69da5e6ba90e799bee5baa6e79fa5e9819331333366303734发动机的燃烧条件、起动、点火等,接手机的颜色传感器,并为计算供油量提供依据。
按原理分为体积型、质量型流量计,按结构分为热膜式、***式、翼片式、卡门旋涡式流量计。翼片式流量计测量精度低且要温度补偿;***式和热膜式测量精度高,无需温度补偿。总的来说,热膜式流量计因为较小的体积,更受工业化生产的青睐。
版权所有©2025 产品网