PTC热敏电阻在-40~250℃区域内保持阻一温的线性变化,从而简化电路。目前,普遍的PTC正温度热敏电阻的阻温特性的突变性的,线性区域很窄,通常用于电路的过流保护,不能用于温度检测、温度补偿电路。在这些材料中,PTC效应表现为电阻随温度增加而线性增加,这就是通常所说的线性PTC效应。经过相变的材料会呈现出电阻沿狭窄温度范围内急剧增加几个至十几个数量级的现象,即非线性PTC效应。多种类型的导电聚合体会呈现出这种效应,如高分子PTC热敏电阻。因为它的体积非常的小,所以在使用的时候也不需要占用多少的位置,帮助大家节约了很多的空间。
热敏电阻无处不在,空调测温,加热控温,保护限温都是采用热敏电阻,热敏电阻成本低廉,构造简单使得应用广泛。热敏电阻的阻值随着温度的变化而变化,变化的阻值就可以得到不同的分压,从而间接换算出温度值,根据测量的温度范围需要选择不同的参考电阻,这样才能得到优的采集线性段。从热敏电阻的变化关系分为正温度系数和负温度系数的热敏电阻,正温度系数就是温度升高,阻值降低;结构一般由NTC热敏电阻、探头(金属壳或塑胶壳等,延长引线,及金属端子或连端器组成。负温度系数则是温度升高,阻值降低。
热敏电阻的优点有:
1、体积小,能够测量其他温度计无法测量的空隙、腔体及生物体内血管的温度;
2、使用方便,电阻值可在0.1~100kΩ间任意选择;
3、工作温度范围宽,常温器件适用于-55℃~315℃,高温器件适用温度高于315℃(目前可达到2000℃)低温器件适用于-273℃~55℃;
要选用多大尺寸的NTC热敏电阻器由滤波电容的大小决定。NTC热敏电阻器的尺寸确定,对允许接入的滤波电容的大小是有严格要求的,这个值也与额定电压有关。在电源应用中,开机浪涌是电容充电产生的,所以通常用给定电压值下的允许接入的电容量来评估NTC热敏电阻承受浪涌电流的能力。其中电阻值以一个比率形式给出(R/R25),该比率表示当前温度下的阻值与25℃时的阻值之比,通常同一系列的热敏电阻器具有类似的特性和相同电阻/温度曲线。
额定电流额定电流表示在的环境条件下可以不断流过PTC热敏电阻的电流。其值取决于耗散常数和RT曲线。如果热敏电阻过载到温度系数再次开始下降的程度,则会导致电源失控并导致热敏电阻损坏。大额定电压与大额定电流相似,大额定电压代表在特定环境条件下可连续施加到热敏电阻的高电压。它的值也取决于耗散常数和RT曲线。运作方式根据应用,PTC热敏电阻可用于两种工作模式; 自加热和传感(也称为零功率)。由于热敏电阻是一种电阻性器件,任何电流源都会在其上因功率而造成发热。
版权所有©2025 产品网