




微纳米气泡如何测量
现阶段,存有于水里的做为纳米汽体颗粒物的微纳米气泡具备工业生产上有效的特性,可是,另外,仅根据粒径精准测量难以将他们与做为残渣存有的固态颗粒物区别开。被视作。在此项科学研究中,大家科学研究了一种应用声致发亮个人行为做为指标值的方式 。也就是说,早已确认,微纳米气泡的存有促使超音波的释放使坍塌提高了声致发亮特性,而且抗压强度的这类差别促使能够将其与根据纳米颗粒布朗运动跟踪方式 等无法区别的微纳米气泡区别开。大家明确提出了一种判定区别固态颗粒物的方式 。此外,即便混和了纳米规格的固态颗粒物,还可以确定仅与微纳米气泡相匹配的声致发亮个人行为,因而能够确定定量分析评估方法的概率。

微纳米气泡自我压缩
考虑一小滴水和一个大型纳米气泡溶解氢工作原理。 两者都被水和气体(气-液界面)之间的边界所包围,并且表面张力作用于这些气-液界面。 从宏观上看,该表面张力是使表面变小的力。 细小的水滴和大型纳米气泡溶解氢工作原理保持接近真实球体的形状
据预测 当该界面施加收缩力时,被界面包围的物体将被“加压”。 内压的上升用杨-拉普拉斯公式表示。 那是,
ΔP=4σ/D
其中ΔP是压力上升,σ是表面张力,D是球体的直径。 据此,对于直径为10μm的球体,压力增加约0.3atm,对于直径为1μm的球体,压力增加约3atm。 现在,当考虑到存在被界面加压时,可以预测水和的行为会有所不同。完成。 水滴是性质接近不可压缩的水,大型纳米气泡溶解氢工作原理是几乎与压力成比例压缩的气体。

微纳米气泡的ζ电位
当考虑微纳米气泡的影响时,增加内部压力是关键词之一。 即,具有产生“过饱和”的效果。 但是,很明显,还有比压力更重要的因素。 那就是气泡的电特性。 实际上,此属性也是“界面”带来的效果,并且是导致界面缩小的微纳米气泡非常独特的结果的根源。

电泳池中微纳米气泡的轨迹。 如果将电极放在两侧,并且正负电极会间歇切换,则气泡在执行锯齿形运动时会上升。 通过分析这种运动,可以读取气泡的电气特性。 换句话说,蒸馏水中的微纳米气泡带负电,ζ电位值约为-35 mV(图4)。 zeta电势是通过电泳获得的值,并且是在滑动表面上的值,但是在微纳米气泡的情况下,认为它与气-液界面4)的电势没有太大不同。

版权所有©2025 产品网