对于完成某一任务的换热器,往往有多个选择,如何确定的换热器,是换热器优化的问题,即采用优化方法使设计的换热器满足的目标函数和约束条件。近年来尽管管壳式换热器也受到了新型换热器的挑战,但由于管壳式热交换器具有结构简单、牢固、操作弹性大、应用材料广等优点,管壳式换热器目前仍是化工、石油和石化行业中使用的主要类型换热器,尤其在高温、高压和大型换热设备中仍占有优势。在换热器设计中,目标函数是指包括设备费用和操作费用在内的总费用。本文主要针对管壳式水冷却器冷却水出口温度的优化问题,利用一般优化设计的原理和方法,以操作费用为优化目标,给出相应的目标函数,并用MATLAB语言编写了计算程序,后给出了一个计算实例。
1目标函数
对于以水为冷却介质的管壳式冷却器,进口水温一定时,由传热学的基本原理分析可知,冷却水的出口费用将影响传热温差,从而影响换热器的传热面积和***费用。特点:结构简单,造价低廉,壳程清洗和检修困难,壳程必须是洁净不易结垢的物料。若冷却水出口温度较低,所需的传热面积可以较小,即换热器的***费用减少;但此时的冷却水的用量则较大,所需的操作费用增加,所以存在使设备费用和操作费用之和为的冷却水出口温度。
设换热器的年固定费用FA = KF.CA.A (1)式中FA———换热器的年固定费用,元;KF———换热器的年折旧率, 1 /y;CA———换热器单位传热面积的***费用,元/m2 ;A———换热器的传热面积,m2。填料函式换热器适用于管、壳壁温差较大或介质易结垢,需经常清理且压力不高的场合。换热器的年操作费用FB =Cu?WuHy/1000 (2)式中FB———换热器的年操作费用,元;Cu———单位质量冷却水费用,元/吨;Wu———换热器冷却水用量, kg/h;Hy———换热器每年运行时间, h。因此换热器的年总费用即目标函数F = FA FB = KFCAA Cu?WuHy/1000 (3)2A与Wu的数学模型———热平衡方程换热器的热负荷为Q =GcPi ( T1 - T2 ) (4)式中Q———换热器的热负荷, kJ /h;G———换热器热介质处理量, kg/h;cpi———热流体介质比热容, kJ / ( kg?℃) ;T1、T2———热流体的进出口温度,℃。
几个***设计条件
①操作压力:作为判定设备是否上类 的条件之一,必须提供
②物料特性:如用户不提供物料名称则必须提供物料的毒性程度。
因为介质的毒性程度关系到设备的无损监测、热处理、锻件的级别
对于上类设备,还关系到设备的划分
a. GB150 10.8.2.1(f)图样注明盛装毒性极度危害或高度危害介质的
容器100%RT.
b. 10.4.1.3 图样注明盛装毒性为极度或高度危害介质的容器,应进行焊后热处理(奥氏体不锈钢的焊接接头可不进行热处理)
c.锻件. 使用介质的毒性为极度或高度危害性的锻件应符合Ⅲ级或Ⅳ级要求。
③管规格:
常用的 碳钢 φ19×2,φ25×2.5,φ32×3, φ38×5
不锈钢φ19×2,φ25×2, φ32×2.5,φ38×2.5
换热管的排列形式:三角形,转角三角形,正方形,转角正方形。
焊接法虽然较胀接可以乃更高的温度,但是在高温循环应力的作用下,焊口极易发生疲劳裂 纹,列管与管孔存在间隙,当受到腐蚀介质的侵蚀时,以会加速接头的损坏。
因此,就产生了焊接和胀接同时使用的方法。这样不但能提高接头的性能,同时 可以降低缝隙腐蚀倾向,因而其使用寿命比单用焊接时长的多。在什么场合下适宜施行焊、胀接并用的方法,目前尚无统一标准。
通常在温度不太高而压力很高或介 质极易渗漏时,采用强度胀加密封焊(密封焊是指单纯防止渗漏而施行的焊接,并不保证强度)。如果泄漏管的数量占壳管换热器总数量的10%以上,则应根据工艺条件进行换管。当在压力和温度都很高的情况下,则采用强度焊加贴胀,(强度焊 是即使焊缝有严密性,又能保证接头具有较大的拉脱力,通常是指焊缝强度等于管子轴向负荷下的强度时的焊接)。
贴胀的作用主要是消除缝隙腐蚀和提高焊缝的性能。具体的结构尺寸标准中(GB/T151)已有规定,在此不再详述。
管壳式换热器
设计计算
1.壳体壁厚计算(包括管箱短节、封头、壳程筒体的壁厚计算)管、壳程筒体壁厚应满足GB151中壁厚的规定,对于碳素钢和低合金钢壁厚是按腐蚀裕量C2=1mm考虑的,对于C2大于1mm的情况,壳体的壁厚应相应增加。
2.开孔补强计算
对于壳体采用钢管制的,建议采用整体补强(增加筒体壁厚或采用厚壁管);对于比较厚的管箱上开大孔考虑综合经济性
不另行补强应满足的几点要求:
①设计压力≤2.5Mpa
②相邻两孔中心距应不小于两孔直径之和的两倍
③接管公称直径≤89mm
④接管壁厚应表8-1的要求(接管腐蚀裕量为1mm)
版权所有©2024 产品网