机床的切削加工是由刀具与工件之间的相对运动来实现的,其运动可分为表面形成运动和辅助运动两类。
表面形成运动是使工件获得所要求的表面形状和尺寸的运动,它包括主运动、进给运动和切入运动。主运动是从工件毛坯上剥离多余材料时起主要作用的运动,它可以是工件的旋转运动(如车削)、直线运动(如在龙门刨床上刨削),也可以是刀具的旋转运动(如铣削和钻削)或直线运动(如插削和拉削);考虑到控制的灵活性,利用两个伺服电机分别对设备的主轴和进给系统进行控制。进给运动是刀具和工件待加工部分相向移动,使切削得以继续进行的运动,如车削外圆时刀架溜板沿机床导轨的移动等;切入运动是使刀具切入工件表面一定深度的运动,其作用是在每一切削行程中从工件表面切去一定厚度的材料,如车削外圆时小刀架的横向切入运动。
辅助运动主要包括刀具或工件的快速趋近和退出、机床部件位置的调整、工件分度、刀架转位、送夹料,启动、变速、换向、停止和自动换刀等运动。
为能够良好的连接高转速的电机轴和低转速的蜗杆,同时确保传动的直线性,我们采用了行星齿轮进行连接,主要是考虑到其在保证减速的同时具有体积小,承载能力大,工作平稳等优点。因为行星齿轮两端存在着较大的速度差,所以在设计的时候需要对其内部齿轮接触进行分析及优化,采用有限元分析软件ANSYS可以有效地分析受力部位及受力大小,从而缩短研发周期,提高开发效率。为提高控制精度和机器工作精度,采用工业上广泛应用的PLC控制技术对镗孔机的伺服电机进行控制,PLC控制的简易性和重复读写性使设备能够更好地根据不同切削对象进行相关参数调整,实现参数化控制。考虑到控制的灵活性,利用两个伺服电机分别对设备的主轴和进给系统进行控制;考虑到操作的简易性,我们自制了PLC控制的相应触摸屏式操作台。冷却系统的液压是由1个电动机带着1个齿轮泵组成,可提供300L/min的流量,具有冷却过滤功能。
便携式船用镗孔机在机械结构上进行了优化设计,在控制系统上进行了开发,提高了镗孔加工精度,实现了参数化加工,降低了劳动强度,提高了工作效率,并且能够很好地适用于船舶轴系和关键部件的加工和维修,具有很好的推广应用价值。
问题产生的原因及分析
切削速度过大或太小。在镗削过程中,如果其切削速度选择不当, 刀尖会产生积屑瘤。当切削速度过大时, 可能会造成刀尖磨损严重,必然降低镗孔的表面粗糙度质量。如果工件的材质较软、熔点较低,过高的切削速度必然引起极高的切削热,该切削热大于工件的熔点时,工件的加工表面会出现“热熔”现象,从而降低镗孔表面粗糙度质量。精镗d1孔达到图样要求,工作台回转180°,调整工件侧基面“A”与工作台纵向移动平行,平行度小于0。当切削速度太小时,镗孔过程中存在刀头“撕裂”工件余量的现象,同样降低镗孔表面粗糙度质量。
切削速度使工艺系统发生共振。当切削速度选择不当时,镗孔过程中会出现工艺系统发生高频共振的现象,严重降低镗孔表面粗糙度质量。此时可采取变更切削速度的方式进行镗孔。9、停车一个班以上的机床,应按说明书规定及液体静压装置使用规定(详见附录Ⅰ)的开车程序和要求作空动转试车3~5分钟。如果工艺系统刚性较差,其共振速度的范围较大,可采取点动按钮变化刀具切削速度的方式对工件进行镗孔。
改进的调头镗孔加工方法
加工工艺。箱体类工件如图2所示,先加工出工艺侧基面“A”,使其与两孔中心线平行。8、按机床的控制方式,可分为仿形机床、程序控制机床、数控机床、适应控制机床、加工中心和柔性制造系统。利用工件较长的侧基面“A”,在镗削d1孔前调整装夹工件,使工件侧基面“A”与工作台纵向移动平行,平行度小于0.005mm/m,然后利用镗床主轴外圆的办法调整机床主轴中心与侧基面“A”重合在一个基面上,工作台横向移动L距离,镗削d1孔,如图3所示。
d1孔镗削完后,工作台回转180°,校准使工件侧基面“A”与工作台纵向移动平行,平行度小于0.005mm/m,然后再利用镗床主轴外圆的办法使机床主轴中心与侧基面“A”重合在一个基面上,工作台横向移动距离L,镗削d2孔。
如果工件上没有较长的侧基面,可以在工件侧面放一平尺作为工艺基准,在校好d1孔时,再校准平尺,侧基面与d1孔轴线平行,使平尺侧基面与工作台纵向移动平行,平行度小于0.005mm/m,调整机床主轴中心与平尺侧基面重合在一个基面上,然后工作台横向移动一个距离,镗削d1孔,d1孔镗完后,用同样的调整方法校准镗削d2孔。撑板内部设有调节螺纹杆,支撑板内部设置有水平螺纹杆,水平螺纹杆两端配合有传动杆,左端的传动杆与调节螺纹杆和水平螺纹杆啮合,右端的滑动镗孔主轴座设置有齿条,右端的传动杆与水平螺纹杆和齿条啮合。
采取新的调头镗削加工工艺,消除了两次工作台回转180°的角度***误差,同时还消除了工作台纵向移动误差。
版权所有©2025 产品网