物理学的这些革命件,引起了显微镜科学技术的革命
物理学的这些革命件,引起了显微镜科学技术的革命。德国科学家鲁斯卡和克诺尔想到,既然“一切实物粒子都具有波动性”,那可以用电子束代替光作为显微镜的“光源”。电子与光子一样,也具有波粒二象性,而电子的波长比光的波长短得多,利用电子束照射样品,就能分辨样品更微小的细节。1932年,他们研制出台电子显微镜,放大倍数达到12000,超过了光学显微镜。这一年鲁斯卡年仅26岁。1939年,在鲁斯卡主持下,西门子公司制造出世界上台实用的电子显微镜。如今,电子显微镜的工作电压高达100万伏,有效放大倍数高达100万倍。电子显微镜完成了显微技术的一次革命,因此鲁斯卡获得1986年诺贝尔物理学奖金的一半,另一半由研制出扫描隧道显微镜的宾尼希和罗雷尔分享。获诺贝尔物理学奖时,鲁斯卡已经是80岁的耄耋老人了,离他去世仅仅两年。
金相显微镜主要用于鉴定和分析
金相显微镜主要用于鉴定和分析金属内部结构***,它是金属学研究金相的重要仪器,是工业部门鉴定产品质量的关键设备,该仪器配用摄像装置,可摄取金相图谱,并对图谱进行测量分析,对图象进行编辑、输出、存储、管理等功能。 金相显微镜由于易于操作、视场较大、价格相对低廉,直到现在仍然是常规检验和研究工作中常使用的仪器。
纯金属(或单相均匀固溶体)的浸蚀基本上为化学溶解过程
纯金属(或单相均匀固溶体)的浸蚀基本上为化学溶解过程。位于晶界处的原子和晶粒内部原子相比,自由能较高,稳定性较差,故易受浸蚀形成凹沟。晶粒内部被浸蚀程度较轻,大体上仍保持原抛光平面。在明场下观察,可以看到一个个晶粒被晶界(黑络)隔开。如浸蚀较深,还可以发现各个晶粒明暗程度不同的现象。这是因为每个晶粒原子排列的位向不同,浸蚀后,以密排面为主的外露面与原抛光面之间倾斜程度不同的缘故。
版权所有©2024 产品网